Through the failure mechanism analysi s and simulation test of a certain kind of detonator,this paper confirms the str ess level of the stepping stress acceleration life test of the detonator,and t hen e stablishes th...Through the failure mechanism analysi s and simulation test of a certain kind of detonator,this paper confirms the str ess level of the stepping stress acceleration life test of the detonator,and t hen e stablishes the data processing mathematical model and storage life forecasting m ethod.At last,according to the result of the stepping stress acceleration lif e test of the detonator,this paper forecasts the reliable storage life of the detonator under the normal stress level.展开更多
In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to ana...In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to analyze the five failure factors that lead to the failure of the accelerator grid of a 30 cm diameter ion thruster under the working mode of 5 k W.Meanwhile,the acceleration stress levels corresponding to different failure factors are obtained.The results show that background pressure has the highest stress level on the grid's erosion.The accelerator grid aperture's mass sputtering rate under the rated vacuum degree(1×10^(-4)Pa)of 5 k W work mode is 8.78 times that of the baseline vacuum degree(1×10^(-6)Pa),and the mass sputtering rate under worse vacuum degree(5×10^(-3)Pa)is 5.08 times that of 1×10^(-4)Pa.Under the influence of the other four failure factors,namely,the voltage of the accelerator grid,upstream plasma density,the screen grid voltage and mass utilization efficiency,the mass sputtering rates of the accelerator grid hole are 2.32,2.67,1.98 and 2.51 times those of the accelerator grid hole under baseline condition,respectively.The ion sputtering results of two 30 cm diameter ion thrusters(both installed with new grids assembly)after working for 1000 h show that the mass sputtering rate of the accelerator grid hole under vacuum conditions of 5×10^(-3)Pa is 4.54 times that under the condition of 1×10^(-4)Pa,and the comparison error between simulation results and test results of acceleration stress is about 10%.In the subsequent ion thruster lifetime verification,the working vacuum degree can be adjusted according to the acceleration stress level of background pressure,so as to shorten the test time and reduce the test cost.展开更多
In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature ...In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature PEMFCs with lower Pt loading.On the one hand,Pt/Nr EGO_(2)-CB_(3)with the strong interaction between the Pt and nitrogen(N)prevent agglomeration of Pt particles and Pt particles is 5.46±1.46 nm,which is smaller than that of 6.78±1.34 nm in Pt/C.Meanwhile,ECSA of Pt/Nr EGO_(2)-CB_(3)decrease 13.65%after AST,which is much lower than that of 97.99%in Pt/C.On the other hand,the Nr EGO flakes in MEAac act as a barrier to mitigate phosphoric acid redistribution,which improves the formation of triple-phase boundaries(TPBs)and gives stable operation of the MEAacwith a lower decay rate of 0.02 mV h^(-1)within100 h.After steady-state operation,the maximum power density of Pt/Nr EGO_(2)-CB_(3)(0.411 W cm^(-2))is three times higher than that of conventional Pt/C(0.134 W cm^(-2))in high-temperature PEMFCs.After AST,the mass transfer resistance of Pt/Nr EGO_(2)-CB_(3)electrode(0.560Ωcm^(2))is lower than that in Pt/C(0.728Ωcm^(2)).展开更多
In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely d...In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.展开更多
Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT...Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.展开更多
In this note,the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time.For the parametric setting where ...In this note,the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time.For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull,maximum likelihood estimation is investigated.展开更多
The performance degradation rates of the missile tank are generally time-varying functions uneasily evaluated by general classical evaluation methods. This paper develops a segmented nonlinear accelerated degradation ...The performance degradation rates of the missile tank are generally time-varying functions uneasily evaluated by general classical evaluation methods. This paper develops a segmented nonlinear accelerated degradation model (SNADM) based on the equivalent method of accumulative damage theory, which tackles the problem that product life is difficult to be determined with degradation rate being a function of the variable of time. A segmented expression of the function of population accumulative degradation is derived. And combined with nonlinear function, an accelerated degradation function, i.e., SNADM is obtained. The parameters of the SNADM are identified by numerical iteration, and the statistical function of degradation track is extrapolated. The reliability function is determined through the type of random process of the degradation distribution. Then an evaluation of product storage life is undertaken by combining the statistical function of degradation track, reliability function and threshold. An example of a missile tank undergoes a step-down stress accelerated degradation test (SDSADT), in which the results with the SNADM and the classical method are evaluated and compared. The technology introduced is validated with the resultant coincidence of both evaluated and field storage lives.展开更多
In this paper, we consider the statistical analysis for the dependent competing risks model in theconstant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focusedon two competing risk...In this paper, we consider the statistical analysis for the dependent competing risks model in theconstant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focusedon two competing risks from Lomax distribution. The maximum likelihood estimators of theunknown parameters, the acceleration coefficients and the reliability of unit are obtained by usingthe Bivariate Pareto Copula function and the measure of dependence known as Kendall’s tau.In addition, the 95% confidence intervals as well as the coverage percentages are obtained byusing Bootstrap-p and Bootstrap-t method. Then, a simulation study is carried out by the MonteCarlo method for different measures of Kendall’s tau and different testing schemes. Finally, a realcompeting risks data is analysed for illustrative purposes. The results indicate that using copulafunction to deal with the dependent competing risks problems is effective and feasible.展开更多
FeNC catalysts are promising substitutes of platinum-type catalysts for the oxygen reduction reaction(ORR).While previous research disclosed that high pyrolysis temperatures are required to achieve good stability,it w...FeNC catalysts are promising substitutes of platinum-type catalysts for the oxygen reduction reaction(ORR).While previous research disclosed that high pyrolysis temperatures are required to achieve good stability,it was identified that a trade-off needs to be made regarding the active site density.The central question is,if a good stability can also be reached at milder pyrolysis conditions but longer duration retaining more active sites,while enabling the defect-rich carbon to heal during a long residence time?To address this,a variation of pyrolysis temperatures and durations is used in FeNC fabrication.Carbon morphology and iron species are characterized by Raman spectroscopy and Mössbauer spectroscopy,respectively.Fuel cell(FC)activity and stability data are acquired.The results are compared to ORR activity and selectivity data from rotating ring disc electrode experiments and resulting durability in accelerated stress tests mimicking the load cycle and start-up and shut-down cycle conditions.It is discussed how pyrolysis temperature and duration affect FC activity and stability.But,more important,the results connect the pyrolysis conditions to the required accelerated stress test protocol combination to enable a prediction of the catalyst stability in fuel cells.展开更多
The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could...The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.展开更多
文摘Through the failure mechanism analysi s and simulation test of a certain kind of detonator,this paper confirms the str ess level of the stepping stress acceleration life test of the detonator,and t hen e stablishes the data processing mathematical model and storage life forecasting m ethod.At last,according to the result of the stepping stress acceleration lif e test of the detonator,this paper forecasts the reliable storage life of the detonator under the normal stress level.
基金supported by Key Laboratory Funds for the Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Physics(Nos.HTKJ2022KL510003 and 6142207210303)Independent project of Hangzhou Institute for Advanced Study(No.2022ZZ01009)Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(No.KJZD-K202101506)。
文摘In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to analyze the five failure factors that lead to the failure of the accelerator grid of a 30 cm diameter ion thruster under the working mode of 5 k W.Meanwhile,the acceleration stress levels corresponding to different failure factors are obtained.The results show that background pressure has the highest stress level on the grid's erosion.The accelerator grid aperture's mass sputtering rate under the rated vacuum degree(1×10^(-4)Pa)of 5 k W work mode is 8.78 times that of the baseline vacuum degree(1×10^(-6)Pa),and the mass sputtering rate under worse vacuum degree(5×10^(-3)Pa)is 5.08 times that of 1×10^(-4)Pa.Under the influence of the other four failure factors,namely,the voltage of the accelerator grid,upstream plasma density,the screen grid voltage and mass utilization efficiency,the mass sputtering rates of the accelerator grid hole are 2.32,2.67,1.98 and 2.51 times those of the accelerator grid hole under baseline condition,respectively.The ion sputtering results of two 30 cm diameter ion thrusters(both installed with new grids assembly)after working for 1000 h show that the mass sputtering rate of the accelerator grid hole under vacuum conditions of 5×10^(-3)Pa is 4.54 times that under the condition of 1×10^(-4)Pa,and the comparison error between simulation results and test results of acceleration stress is about 10%.In the subsequent ion thruster lifetime verification,the working vacuum degree can be adjusted according to the acceleration stress level of background pressure,so as to shorten the test time and reduce the test cost.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)(EP/P009050/1 and EP/S021531/1)Tthe Henry Royce Institute for Advanced Materials,funded through the EPSRC grants(EP/R00661X/1,EP/S019367/1,EP/P025021/1 and EP/P025498/1)。
文摘In this study,nitrogen doped electrochemically exfoliated reduced graphene oxide and carbon black supported platinum(Pt/Nr EGO_(2)-CB_(3))has been prepared to enhance the performance and durability of hightemperature PEMFCs with lower Pt loading.On the one hand,Pt/Nr EGO_(2)-CB_(3)with the strong interaction between the Pt and nitrogen(N)prevent agglomeration of Pt particles and Pt particles is 5.46±1.46 nm,which is smaller than that of 6.78±1.34 nm in Pt/C.Meanwhile,ECSA of Pt/Nr EGO_(2)-CB_(3)decrease 13.65%after AST,which is much lower than that of 97.99%in Pt/C.On the other hand,the Nr EGO flakes in MEAac act as a barrier to mitigate phosphoric acid redistribution,which improves the formation of triple-phase boundaries(TPBs)and gives stable operation of the MEAacwith a lower decay rate of 0.02 mV h^(-1)within100 h.After steady-state operation,the maximum power density of Pt/Nr EGO_(2)-CB_(3)(0.411 W cm^(-2))is three times higher than that of conventional Pt/C(0.134 W cm^(-2))in high-temperature PEMFCs.After AST,the mass transfer resistance of Pt/Nr EGO_(2)-CB_(3)electrode(0.560Ωcm^(2))is lower than that in Pt/C(0.728Ωcm^(2)).
文摘In general,simple subsystems like series or parallel are integrated to produce a complex hybrid system.The reliability of a system is determined by the reliability of its constituent components.It is often extremely difficult or impossible to get specific information about the component that caused the system to fail.Unknown failure causes are instances in which the actual cause of systemfailure is unknown.On the other side,thanks to current advanced technology based on computers,automation,and simulation,products have become incredibly dependable and trustworthy,and as a result,obtaining failure data for testing such exceptionally reliable items have become a very costly and time-consuming procedure.Therefore,because of its capacity to produce rapid and adequate failure data in a short period of time,accelerated life testing(ALT)is the most utilized approach in the field of product reliability and life testing.Based on progressively hybrid censored(PrHC)data froma three-component parallel series hybrid system that failed to owe to unknown causes,this paper investigates a challenging problem of parameter estimation and reliability assessment under a step stress partially accelerated life-test(SSPALT).Failures of components are considered to follow a power linear hazard rate(PLHR),which can be used when the failure rate displays linear,decreasing,increasing or bathtub failure patterns.The Tempered random variable(TRV)model is considered to reflect the effect of the high stress level used to induce early failure data.The maximum likelihood estimation(MLE)approach is used to estimate the parameters of the PLHR distribution and the acceleration factor.A variance covariance matrix(VCM)is then obtained to construct the approximate confidence intervals(ACIs).In addition,studentized bootstrap confidence intervals(ST-B CIs)are also constructed and compared with ACIs in terms of their respective interval lengths(ILs).Moreover,a simulation study is conducted to demonstrate the performance of the estimation procedures and the methodology discussed in this paper.Finally,real failure data from the air conditioning systems of an airplane is used to illustrate further the performance of the suggested estimation technique.
基金supported by the Ministry Level Project of China
文摘Abstract With the recent products being more reliable, engineers cannot obtain enough failure or degradation information through the design period and even the product lifetime, therefore, accel erated life test (ALT) ihas become the most popular way to quantify the life characteristics of prod ucts. Test design is the most essential topic, such as testing duration, stress profile, data inference, etc. In this paper, a method and procedure based on theoretical life models is proposed to determine the accelerated stress profile. Firstly, the method for theoretical life calculation is put forward based on the main failure mechanism analysis and the theoretical life models. Secondly, the method is pro vided to determine the accelerated stress profile, including the method to determine the accelerated stress types and the stress range on the basis of the main failure mechanism analysis, the method to determine the acceleration factor and the accelerated stress level based on life quantitative calcula tion models, and the collaborative analysis method of the accelerated test time while taking the mul tiple failure mechanisms into consideration. Lastly, the actuator is taken as an example to describe the procedure of the method and the engineering applicability and the validity are verified.
基金This research is by the National Natural Science Foundation of China(69971016, 10271079) the Science and Technology Development Foundation of Shanghai(00JC14507) the Major Branch of Learning Foundation of Shanghai.
文摘In this note,the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time.For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull,maximum likelihood estimation is investigated.
文摘The performance degradation rates of the missile tank are generally time-varying functions uneasily evaluated by general classical evaluation methods. This paper develops a segmented nonlinear accelerated degradation model (SNADM) based on the equivalent method of accumulative damage theory, which tackles the problem that product life is difficult to be determined with degradation rate being a function of the variable of time. A segmented expression of the function of population accumulative degradation is derived. And combined with nonlinear function, an accelerated degradation function, i.e., SNADM is obtained. The parameters of the SNADM are identified by numerical iteration, and the statistical function of degradation track is extrapolated. The reliability function is determined through the type of random process of the degradation distribution. Then an evaluation of product storage life is undertaken by combining the statistical function of degradation track, reliability function and threshold. An example of a missile tank undergoes a step-down stress accelerated degradation test (SDSADT), in which the results with the SNADM and the classical method are evaluated and compared. The technology introduced is validated with the resultant coincidence of both evaluated and field storage lives.
基金This work is supported by the National Natural Science Foundation of China[grant number 71571144],[grant number 71401134],[grant number 71171164],[grant number 11701406]Natural Science Basic Research Program of Shaanxi Province[grant number 2015JM1003]Program of International Cooperation and Exchanges in Science and Technology Funded by Shaanxi Province[grant number 2016KW-033].
文摘In this paper, we consider the statistical analysis for the dependent competing risks model in theconstant stress accelerated life testing (CSALT) with Type-II progressive censoring. It is focusedon two competing risks from Lomax distribution. The maximum likelihood estimators of theunknown parameters, the acceleration coefficients and the reliability of unit are obtained by usingthe Bivariate Pareto Copula function and the measure of dependence known as Kendall’s tau.In addition, the 95% confidence intervals as well as the coverage percentages are obtained byusing Bootstrap-p and Bootstrap-t method. Then, a simulation study is carried out by the MonteCarlo method for different measures of Kendall’s tau and different testing schemes. Finally, a realcompeting risks data is analysed for illustrative purposes. The results indicate that using copulafunction to deal with the dependent competing risks problems is effective and feasible.
基金Bundesministerium für Bildung und Forschung,Grant/Award Number:03XP0092。
文摘FeNC catalysts are promising substitutes of platinum-type catalysts for the oxygen reduction reaction(ORR).While previous research disclosed that high pyrolysis temperatures are required to achieve good stability,it was identified that a trade-off needs to be made regarding the active site density.The central question is,if a good stability can also be reached at milder pyrolysis conditions but longer duration retaining more active sites,while enabling the defect-rich carbon to heal during a long residence time?To address this,a variation of pyrolysis temperatures and durations is used in FeNC fabrication.Carbon morphology and iron species are characterized by Raman spectroscopy and Mössbauer spectroscopy,respectively.Fuel cell(FC)activity and stability data are acquired.The results are compared to ORR activity and selectivity data from rotating ring disc electrode experiments and resulting durability in accelerated stress tests mimicking the load cycle and start-up and shut-down cycle conditions.It is discussed how pyrolysis temperature and duration affect FC activity and stability.But,more important,the results connect the pyrolysis conditions to the required accelerated stress test protocol combination to enable a prediction of the catalyst stability in fuel cells.
文摘The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.