During recent years, a new generation of nuclear reactors, known as “Accelerator Driven Subcritical Reactors”, has been developed. One of the new application aspects for such reactors (besides transmutation of High ...During recent years, a new generation of nuclear reactors, known as “Accelerator Driven Subcritical Reactors”, has been developed. One of the new application aspects for such reactors (besides transmutation of High Level Waste and burning Minor Actinides) is usage of thorium as nuclear fuel. In this work a subcritical core in experimental scale is simulated by MCNPX code. The core contains two types of fuel assemblies: (85% ThO2 + 15% UO2) and MOX (U-Pu). In the first step, only the thorium-contained fuel assemblies are loaded into the core. Criticality calculations using MCNPX show that the keff is so low that the fuel assemblies cannot run the subcritical core. This implies that MOX (U-Pu) assemblies must be loaded as well. Neutronic parameters of the thorium- fueled Accelerator Driven Subcritical core are then calculated as well as some other parameters related to accelerator coupled with the core. The main objective of this simulation is to study the behavior of Accelerator Driven Subcritical core with thorium assemblies.展开更多
The study of accelerator-driven subcritical reactor systems(ADSs) has been an important research topic in the field of nuclear energy for years. The main code applied in ADS research is MCNPX, which was developed by L...The study of accelerator-driven subcritical reactor systems(ADSs) has been an important research topic in the field of nuclear energy for years. The main code applied in ADS research is MCNPX, which was developed by Los Alamos National Laboratory. We studied the application of the open-source Monte Carlo codes FLUKA and OpenMC to a coupled ADS calculation. The FLUKA code was used to simulate the reaction of highenergy protons with the nucleus of the target material in the ADS, which produces spallation neutrons. Information on the spallation neutrons, such as their energy, position,direction, and weight, can be recorded by a user-defined routine called FLUSCW provided by FLUKA. Then, the information was stored in an external neutron source file in HDF5 format by using a conversion code, as required by the OpenMC calculation. Finally, the fixed-source calculation function of OpenMC was applied to simulate the transport of spallation neutrons and obtain the distribution of the neutron flux in the core region. In the coupled calculation, the high-energy cross-section library JENDL4.0/HE in ACE format produced by NJOY2016 was applied in the OpenMC transport simulation. The OECD–ADS benchmark problem was calculated, and the results were compared with those obtained using MCNPX. It was found that the flux calculations performed by FLUKA–OpenMC and MCNPX were in agreement, so the coupling calculation method for ADS is reasonable and feasible.展开更多
An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the ...An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.展开更多
The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was de...The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was developed by Tsinghua University. A Monte Carlo method is used for the neutron transport analysis, and the burnup calculation is based on a deterministic method. The code can be used for the analysis of targets coupled with a reactor in ADSs. In response to additional ADS analysis requirements at the Institute of Modern Physics at the Chinese Academy of Sciences, the COUPLE3.0 version was developed to include the new functions of(1) a module for the calculation of proton irradiation for the analysis of cumulative behavior using the residual radionuclide operating history,(2) a fixed-flux radiation module for hazard assessment and analysis of the burnable poison, and(3) a module for multi-kernel parallel calculation, which improves the radionuclide replacement for the burnup analysis to balance the precision level and computational efficiency of the program. This paper introduces thevalidation of the COUPLE3.0 code using a fast reactor benchmark and ADS benchmark calculations. Moreover,the proton irradiation module was verified by a comparison with the analytic method of calculating the210 Po accumulation results. The results demonstrate that COUPLE3.0 is suitable for the analysis of neutron transport and the burnup of nuclides for ADSs.展开更多
文摘During recent years, a new generation of nuclear reactors, known as “Accelerator Driven Subcritical Reactors”, has been developed. One of the new application aspects for such reactors (besides transmutation of High Level Waste and burning Minor Actinides) is usage of thorium as nuclear fuel. In this work a subcritical core in experimental scale is simulated by MCNPX code. The core contains two types of fuel assemblies: (85% ThO2 + 15% UO2) and MOX (U-Pu). In the first step, only the thorium-contained fuel assemblies are loaded into the core. Criticality calculations using MCNPX show that the keff is so low that the fuel assemblies cannot run the subcritical core. This implies that MOX (U-Pu) assemblies must be loaded as well. Neutronic parameters of the thorium- fueled Accelerator Driven Subcritical core are then calculated as well as some other parameters related to accelerator coupled with the core. The main objective of this simulation is to study the behavior of Accelerator Driven Subcritical core with thorium assemblies.
基金supported by the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences(No.XDA03030102)
文摘The study of accelerator-driven subcritical reactor systems(ADSs) has been an important research topic in the field of nuclear energy for years. The main code applied in ADS research is MCNPX, which was developed by Los Alamos National Laboratory. We studied the application of the open-source Monte Carlo codes FLUKA and OpenMC to a coupled ADS calculation. The FLUKA code was used to simulate the reaction of highenergy protons with the nucleus of the target material in the ADS, which produces spallation neutrons. Information on the spallation neutrons, such as their energy, position,direction, and weight, can be recorded by a user-defined routine called FLUSCW provided by FLUKA. Then, the information was stored in an external neutron source file in HDF5 format by using a conversion code, as required by the OpenMC calculation. Finally, the fixed-source calculation function of OpenMC was applied to simulate the transport of spallation neutrons and obtain the distribution of the neutron flux in the core region. In the coupled calculation, the high-energy cross-section library JENDL4.0/HE in ACE format produced by NJOY2016 was applied in the OpenMC transport simulation. The OECD–ADS benchmark problem was calculated, and the results were compared with those obtained using MCNPX. It was found that the flux calculations performed by FLUKA–OpenMC and MCNPX were in agreement, so the coupling calculation method for ADS is reasonable and feasible.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was developed by Tsinghua University. A Monte Carlo method is used for the neutron transport analysis, and the burnup calculation is based on a deterministic method. The code can be used for the analysis of targets coupled with a reactor in ADSs. In response to additional ADS analysis requirements at the Institute of Modern Physics at the Chinese Academy of Sciences, the COUPLE3.0 version was developed to include the new functions of(1) a module for the calculation of proton irradiation for the analysis of cumulative behavior using the residual radionuclide operating history,(2) a fixed-flux radiation module for hazard assessment and analysis of the burnable poison, and(3) a module for multi-kernel parallel calculation, which improves the radionuclide replacement for the burnup analysis to balance the precision level and computational efficiency of the program. This paper introduces thevalidation of the COUPLE3.0 code using a fast reactor benchmark and ADS benchmark calculations. Moreover,the proton irradiation module was verified by a comparison with the analytic method of calculating the210 Po accumulation results. The results demonstrate that COUPLE3.0 is suitable for the analysis of neutron transport and the burnup of nuclides for ADSs.