Owing to the immobility of traditional reactors and spallation neutron sources,the demand for compact thermal neutron radiography(CTNR)based on accelerator neutron sources has rapidly increased in industrial applicati...Owing to the immobility of traditional reactors and spallation neutron sources,the demand for compact thermal neutron radiography(CTNR)based on accelerator neutron sources has rapidly increased in industrial applications.Recently,thermal neutron radiography experiments based on a D-T neutron generator performed by Hefei Institutes of Physical Science indicated a significant resolution deviation between the experimental results and the values calculated using the traditional resolution model.The experimental result was up to 23%lower than the calculated result,which hinders the achievement of the design goal of a compact neutron radiography system.A GEANT4 Monte Carlo code was developed to simulate the CTNR process,aiming to identify the key factors leading to resolution deviation.The effects of a low collimation ratio and high-energy neutrons were analyzed based on the neutron beam environment of the CTNR system.The results showed that the deviation was primarily caused by geometric distortion at low collimation ratios and radiation noise induced by highenergy neutrons.Additionally,the theoretical model was modified by considering the imaging position and radiation noise factors.The modified theoretical model was in good agreement with the experimental results,and the maximum deviation was reduced to 4.22%.This can be useful for the high-precision design of CTNR systems.展开更多
Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) additi...Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 30(0-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L, and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively.展开更多
In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understandin...In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed.展开更多
An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the ...An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.展开更多
Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was establis...Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was established.The nuclear data measurement facility for the ADS spallation target has been constructed, which provides a very important platform for the experimental measurements of spallation reactions. A number of experiments have been conducted in the nuclear data terminal. A Neutron Time-of-Flight(NTOF)spectrometer was developed for the study of neutron production from spallation reactions related to the ADS project.The experiments of 400 MeV/u ^(16)O bombarded on a tungsten target were presented using a NTOF spectrometer.Neutron yields for 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target have been measured using the water-bath neutron activation method. Spallation residual productions were studied by bombarding W and Pb targets with a 250 MeV proton beam using the neutron activation method. Benchmarking of evaluated nuclear data libraries was performed for D-T neutrons on ADS relevant materials by using the benchmark experimental facility at the China Institute of Atomic Energy.展开更多
The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was de...The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was developed by Tsinghua University. A Monte Carlo method is used for the neutron transport analysis, and the burnup calculation is based on a deterministic method. The code can be used for the analysis of targets coupled with a reactor in ADSs. In response to additional ADS analysis requirements at the Institute of Modern Physics at the Chinese Academy of Sciences, the COUPLE3.0 version was developed to include the new functions of(1) a module for the calculation of proton irradiation for the analysis of cumulative behavior using the residual radionuclide operating history,(2) a fixed-flux radiation module for hazard assessment and analysis of the burnable poison, and(3) a module for multi-kernel parallel calculation, which improves the radionuclide replacement for the burnup analysis to balance the precision level and computational efficiency of the program. This paper introduces thevalidation of the COUPLE3.0 code using a fast reactor benchmark and ADS benchmark calculations. Moreover,the proton irradiation module was verified by a comparison with the analytic method of calculating the210 Po accumulation results. The results demonstrate that COUPLE3.0 is suitable for the analysis of neutron transport and the burnup of nuclides for ADSs.展开更多
In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Instit...In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Institute of Nuclear Energy Safety Technology,was selected as the reference reactor for ADS development,as well as for the technology development of the Generation IV lead-cooled fast reactor.The conceptual design of CLEAR-I with 10 MW thermal power has been completed.KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant,key components,structural materials,fuel assembly,operation,and control.In order to validate and test the key components and integrated operating technology of the lead-based reactor,the lead alloy-cooled non-nuclear reactor CLEAR-S,the lead-based zero-power nuclear reactor CLEAR-0,and the lead-based virtual reactor CLEAR-V are under realization.展开更多
基金supported by the Nuclear Energy Development Project of China (No.[2019]1342)the Presidential Foundation of HFIPS (No.YZJJ2022QN40)。
文摘Owing to the immobility of traditional reactors and spallation neutron sources,the demand for compact thermal neutron radiography(CTNR)based on accelerator neutron sources has rapidly increased in industrial applications.Recently,thermal neutron radiography experiments based on a D-T neutron generator performed by Hefei Institutes of Physical Science indicated a significant resolution deviation between the experimental results and the values calculated using the traditional resolution model.The experimental result was up to 23%lower than the calculated result,which hinders the achievement of the design goal of a compact neutron radiography system.A GEANT4 Monte Carlo code was developed to simulate the CTNR process,aiming to identify the key factors leading to resolution deviation.The effects of a low collimation ratio and high-energy neutrons were analyzed based on the neutron beam environment of the CTNR system.The results showed that the deviation was primarily caused by geometric distortion at low collimation ratios and radiation noise induced by highenergy neutrons.Additionally,the theoretical model was modified by considering the imaging position and radiation noise factors.The modified theoretical model was in good agreement with the experimental results,and the maximum deviation was reduced to 4.22%.This can be useful for the high-precision design of CTNR systems.
文摘Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 30(0-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L, and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively.
文摘In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘An accelerator-driven subcritical system(ADS)is driven by an external spallation neutron source, which is generated from a heavy metal spallation target to maintain stable operation of the subcritical core, where the energy of the spallation neutrons can reach several hundred megaelectron volts. However, the upper neutron energy limit of nuclear cross-section databases, which are widely used in critical reactor physics calculations, is generally 20 MeV.This is not suitable for simulating the transport of highenergy spallation neutrons in the ADS. We combine the Japanese JENDL-4.0/HE high-energy evaluation database and the ADS-HE and ADS 2.0 libraries from the International Atomic Energy Agency and process all the data files for nuclides with energies greater than 20 MeV. We use the continuous pointwise cross-section program NJOY2016 to generate the ACE-formatted cross-section data library IMPC-ADS at multiple temperature points. Using the IMPC-ADS library, we calculate 10 critical benchmarks of the International Criticality Safety Benchmark Evaluation Project manual, the 14-MeV fixed-source problem of the Godiva sphere, and the neutron flux of the ADS subcritical core by MCNPX. To verify the correctness of the IMPCADS, the results were compared with those calculated using the ENDF/B-VII.0 library. The results showed thatthe IMPC-ADS is reliable in effective multiplication factor and neutron flux calculations, and it can be applied to physical analysis of the ADS subcritical reactor core.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences ADS Project(No.XDA03030200)the National Natural Science Foundation of China(No.91426301)
文摘Recent progress in nuclear data measurement for ADS at Institute of Modern Physics is reviewed briefly.Based on the cooler storage ring of the Heavy Ion Research Facility in Lanzhou, nuclear data terminal was established.The nuclear data measurement facility for the ADS spallation target has been constructed, which provides a very important platform for the experimental measurements of spallation reactions. A number of experiments have been conducted in the nuclear data terminal. A Neutron Time-of-Flight(NTOF)spectrometer was developed for the study of neutron production from spallation reactions related to the ADS project.The experiments of 400 MeV/u ^(16)O bombarded on a tungsten target were presented using a NTOF spectrometer.Neutron yields for 250 MeV protons incident on a thick grain-made tungsten target and a thick solid lead target have been measured using the water-bath neutron activation method. Spallation residual productions were studied by bombarding W and Pb targets with a 250 MeV proton beam using the neutron activation method. Benchmarking of evaluated nuclear data libraries was performed for D-T neutrons on ADS relevant materials by using the benchmark experimental facility at the China Institute of Atomic Energy.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was developed by Tsinghua University. A Monte Carlo method is used for the neutron transport analysis, and the burnup calculation is based on a deterministic method. The code can be used for the analysis of targets coupled with a reactor in ADSs. In response to additional ADS analysis requirements at the Institute of Modern Physics at the Chinese Academy of Sciences, the COUPLE3.0 version was developed to include the new functions of(1) a module for the calculation of proton irradiation for the analysis of cumulative behavior using the residual radionuclide operating history,(2) a fixed-flux radiation module for hazard assessment and analysis of the burnable poison, and(3) a module for multi-kernel parallel calculation, which improves the radionuclide replacement for the burnup analysis to balance the precision level and computational efficiency of the program. This paper introduces thevalidation of the COUPLE3.0 code using a fast reactor benchmark and ADS benchmark calculations. Moreover,the proton irradiation module was verified by a comparison with the analytic method of calculating the210 Po accumulation results. The results demonstrate that COUPLE3.0 is suitable for the analysis of neutron transport and the burnup of nuclides for ADSs.
文摘In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Institute of Nuclear Energy Safety Technology,was selected as the reference reactor for ADS development,as well as for the technology development of the Generation IV lead-cooled fast reactor.The conceptual design of CLEAR-I with 10 MW thermal power has been completed.KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant,key components,structural materials,fuel assembly,operation,and control.In order to validate and test the key components and integrated operating technology of the lead-based reactor,the lead alloy-cooled non-nuclear reactor CLEAR-S,the lead-based zero-power nuclear reactor CLEAR-0,and the lead-based virtual reactor CLEAR-V are under realization.