This paper describes an n-i-p-i-n model heterostructure with a manganese (Mn)-doped p-type base region to check the stability of a positively charged manganese A+Mn centre with two holes weakly bound by a negativel...This paper describes an n-i-p-i-n model heterostructure with a manganese (Mn)-doped p-type base region to check the stability of a positively charged manganese A+Mn centre with two holes weakly bound by a negatively charged 3dS(Mn) core of a local spin S = 5/2 in the framework of the effective mass approximation near the F critical point (k -0). By including the carrier screening effect, the ground state energy and the binding energy of the second hole in the positively charged centre A+Mn are calculated within a hole concentration range from 1 ×10^16 cm-3 to 1 × 10^17 cm^-3, which is achievable by biasing the structure under photo-excitation. For comparison, the ground-state energy of a single hole in the neutral AMn centre is calculated in the same concentration range. It turns out that the binding energy of the second hole in the A+Mn centre varies from 9.27 meV to 4.57 meV. We propose that the presence of the A+Mn centre can be examined by measuring the photoluminescence from recombination of electrons in the conduction band with the bound holes in the A+Mn centre since a high frequency dielectric constant of ε∞ = 10.66 can be safely adopted in this case. The novel feature of the ability to tune the impurity level of the A+Mn centre makes it attractive for optically and electrically manipulating local magnetic spins in semiconductors.展开更多
In this work, star-shaped perylene bisimide(PBI) derivatives with spiro-aromatic cores linked with ethynyl units were developed as electron acceptors for non-fullerene organic solar cells. The ethynyl linkers were f...In this work, star-shaped perylene bisimide(PBI) derivatives with spiro-aromatic cores linked with ethynyl units were developed as electron acceptors for non-fullerene organic solar cells. The ethynyl linkers were found to enhance the planarity of the conjugated backbone, resulting in high electron mobilities and near-infrared absorption. The ethynyl-linked PBI acceptors showed high power conversion efficiencies(PCEs) up to 4.27% due to the high short-circuit current density(Jsc) of 8.52 mA/cm^2 and fill factor(FF) of 0.59, while the PBI acceptor without ethynyl units provided a low PCE of 3.57% in nonfullerene solar cells. The results demonstrate that ethynyl units can be applied into designing new PBI electron acceptors with improved charge transport properties and photovoltaic performance.展开更多
基金supported by the National Basic Research Program of China (Grant Nos. 2007CB924904 and 2011CB932901)
文摘This paper describes an n-i-p-i-n model heterostructure with a manganese (Mn)-doped p-type base region to check the stability of a positively charged manganese A+Mn centre with two holes weakly bound by a negatively charged 3dS(Mn) core of a local spin S = 5/2 in the framework of the effective mass approximation near the F critical point (k -0). By including the carrier screening effect, the ground state energy and the binding energy of the second hole in the positively charged centre A+Mn are calculated within a hole concentration range from 1 ×10^16 cm-3 to 1 × 10^17 cm^-3, which is achievable by biasing the structure under photo-excitation. For comparison, the ground-state energy of a single hole in the neutral AMn centre is calculated in the same concentration range. It turns out that the binding energy of the second hole in the A+Mn centre varies from 9.27 meV to 4.57 meV. We propose that the presence of the A+Mn centre can be examined by measuring the photoluminescence from recombination of electrons in the conduction band with the bound holes in the A+Mn centre since a high frequency dielectric constant of ε∞ = 10.66 can be safely adopted in this case. The novel feature of the ability to tune the impurity level of the A+Mn centre makes it attractive for optically and electrically manipulating local magnetic spins in semiconductors.
基金supported by the Recruitment Program of Global Youth Experts of Chinasupported by the National Natural Science Foundation of China(Nos. 21574138, 51603209 and 91633301)the Strategic Priority Research Program(No. XDB12030200) of the Chinese Academy of Sciences
文摘In this work, star-shaped perylene bisimide(PBI) derivatives with spiro-aromatic cores linked with ethynyl units were developed as electron acceptors for non-fullerene organic solar cells. The ethynyl linkers were found to enhance the planarity of the conjugated backbone, resulting in high electron mobilities and near-infrared absorption. The ethynyl-linked PBI acceptors showed high power conversion efficiencies(PCEs) up to 4.27% due to the high short-circuit current density(Jsc) of 8.52 mA/cm^2 and fill factor(FF) of 0.59, while the PBI acceptor without ethynyl units provided a low PCE of 3.57% in nonfullerene solar cells. The results demonstrate that ethynyl units can be applied into designing new PBI electron acceptors with improved charge transport properties and photovoltaic performance.