The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient ...The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient n-type polymer thermoelectric materials.Herein,we developed three acceptor-acceptor type organoboron polymers and investigated the effect of backbone configuration on thermoelectric performance.The three polymers are designed based on double B←N bridged bipyridine(BNBP)unit with monomeric thieno[3,4-c]pyrrole-4,6-dione(TPD),TPD dimer and TPD trimer as the copolymerizing units,respectively.The three polymers show similar low LUMO energy levels but different backbone configuration.Compared with the wavy backbone configuration,the pseudo-straight backbone configuration imparts the polymer with much enhanced crystallinity and electron mobility.As a result,after n-doping,the polymer with pseudo-straight configuration shows much higher electronic conductivity and power factor.We think these findings could serve as important guidelines for molecular design toward efficient n-type polymer thermoelectric materials.展开更多
Balanced carrier transport is observed in acceptor-acceptor (A-A') type polymer for ambipolar organic thin-film transistors (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and...Balanced carrier transport is observed in acceptor-acceptor (A-A') type polymer for ambipolar organic thin-film transistors (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and IIG) into a polymer main chain to form A-A' polymer PIIG-BTz could lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and facilitate good molecular stacking of the polymer. Ambipolar transistor behaviour for PIIG-BTz, with the balanced hole and electron mobilities of 0.030 and 0.022 cm2 V 1 s-i was observed in OTFT devices, respectively. The study in this work reveals that the utilization of acceptor-acceptor (A-A') structure in polymer main chain can be a feasible strategy to develop ambipolar polymer semiconductors.展开更多
The results of interaction between CdSe quantum dots and polyaniline were reported. Polyaniline effectively decreases the emission of CdSe quantum dots, and the CdSe luminescence lifetime is decreased by the addition ...The results of interaction between CdSe quantum dots and polyaniline were reported. Polyaniline effectively decreases the emission of CdSe quantum dots, and the CdSe luminescence lifetime is decreased by the addition of polyaniline. The mechanism of the emission observed in CdSe is assumed to result from the energy transfer and from the combination of surface-trapped electrons and holes energy is transferred from CdSe to polyaniline, and polyaniline occupies the hole sites.展开更多
Non-fullerene acceptors(NFAs)become an interesting family of organic photovoltaic materials,and have attracted considerable interest for their great potential in manufacturing large-area flexible solar panels by low c...Non-fullerene acceptors(NFAs)become an interesting family of organic photovoltaic materials,and have attracted considerable interest for their great potential in manufacturing large-area flexible solar panels by low cost coating methods[1–5].Recently,our group proposed in the first time an A-DA’D-A molecular strategy and synthesized a new class of non-fullerene acceptor Y6 with a record efficiency above 15%with single junction organic solar cells(OSCs)[6].To further improve the photovoltaic performance of OSCs,many effective strategies have been successfully explored,such as side-chain engineering and extension of fused core and terminal group engineering[7–12].As well-known,PCE of devices is determined by the open circuit voltage(Voc),short-circuit current density(Jsc)and fill factor(FF)[13].Among them,Voc is associated with low-lying highest occupied molecular orbital(HOMO)of donor and lowest unoccupied molecular orbital(LUMO)of acceptor of the active layer[14–16].Side-chain engineering is an effective strategy for manipulating energy levels and improving photovoltaic performance of devices[17–19].For example,introducing the alkyl/alkoxy chains can effectively tune the HOMO/LUMO energy levels[20–22].Tang et al.have reported a novel non-fullerene acceptor ITC6-IC.ITC6-IC has relatively high LUMO level and high Voc than those of ITIC due to the introduction of weak electrondonating hexyl group on thiophene[23].展开更多
基金the National Natural Science Foundation of China(Nos.22075271,21625403,21875244 and 21875241)B.M.thanks the financial supports by State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences and the Jilin Scientific and Technological Development Program(No.20220508142RC).
文摘The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance.New structural insights into the thermoelectric performance are needed for efficient n-type polymer thermoelectric materials.Herein,we developed three acceptor-acceptor type organoboron polymers and investigated the effect of backbone configuration on thermoelectric performance.The three polymers are designed based on double B←N bridged bipyridine(BNBP)unit with monomeric thieno[3,4-c]pyrrole-4,6-dione(TPD),TPD dimer and TPD trimer as the copolymerizing units,respectively.The three polymers show similar low LUMO energy levels but different backbone configuration.Compared with the wavy backbone configuration,the pseudo-straight backbone configuration imparts the polymer with much enhanced crystallinity and electron mobility.As a result,after n-doping,the polymer with pseudo-straight configuration shows much higher electronic conductivity and power factor.We think these findings could serve as important guidelines for molecular design toward efficient n-type polymer thermoelectric materials.
基金supported by the National Natural Science Foundation of China (51173055, 21504026, 51572094)the National Basic Research Program of China (2013CBA01600)the China Postdoctoral Science Foundation (2013M542009)
文摘Balanced carrier transport is observed in acceptor-acceptor (A-A') type polymer for ambipolar organic thin-film transistors (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and IIG) into a polymer main chain to form A-A' polymer PIIG-BTz could lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and facilitate good molecular stacking of the polymer. Ambipolar transistor behaviour for PIIG-BTz, with the balanced hole and electron mobilities of 0.030 and 0.022 cm2 V 1 s-i was observed in OTFT devices, respectively. The study in this work reveals that the utilization of acceptor-acceptor (A-A') structure in polymer main chain can be a feasible strategy to develop ambipolar polymer semiconductors.
基金supported by the National Natural Science Foundation of China(21734001,51761165023,21504066,21534003)the Department of the Navy U.S.(N00014-14-1-0580,N00014-16-1-2520)+1 种基金the Ministry of Science and Technology,China(2016YFA0200700)the Natural Science Foundation,U.S.(DMR-1507249,CBET-1639429)~~
基金Major Foundation of Chinese Academy of Sciences(No 2002CD713802)National High Technology Develop-ment Program(No 2002AA302203)
文摘The results of interaction between CdSe quantum dots and polyaniline were reported. Polyaniline effectively decreases the emission of CdSe quantum dots, and the CdSe luminescence lifetime is decreased by the addition of polyaniline. The mechanism of the emission observed in CdSe is assumed to result from the energy transfer and from the combination of surface-trapped electrons and holes energy is transferred from CdSe to polyaniline, and polyaniline occupies the hole sites.
文摘Non-fullerene acceptors(NFAs)become an interesting family of organic photovoltaic materials,and have attracted considerable interest for their great potential in manufacturing large-area flexible solar panels by low cost coating methods[1–5].Recently,our group proposed in the first time an A-DA’D-A molecular strategy and synthesized a new class of non-fullerene acceptor Y6 with a record efficiency above 15%with single junction organic solar cells(OSCs)[6].To further improve the photovoltaic performance of OSCs,many effective strategies have been successfully explored,such as side-chain engineering and extension of fused core and terminal group engineering[7–12].As well-known,PCE of devices is determined by the open circuit voltage(Voc),short-circuit current density(Jsc)and fill factor(FF)[13].Among them,Voc is associated with low-lying highest occupied molecular orbital(HOMO)of donor and lowest unoccupied molecular orbital(LUMO)of acceptor of the active layer[14–16].Side-chain engineering is an effective strategy for manipulating energy levels and improving photovoltaic performance of devices[17–19].For example,introducing the alkyl/alkoxy chains can effectively tune the HOMO/LUMO energy levels[20–22].Tang et al.have reported a novel non-fullerene acceptor ITC6-IC.ITC6-IC has relatively high LUMO level and high Voc than those of ITIC due to the introduction of weak electrondonating hexyl group on thiophene[23].