In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powder...In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900℃ for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800℃, which can be ascribed to the formation of the liquid phase during the synthesis.展开更多
文摘In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900℃ for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800℃, which can be ascribed to the formation of the liquid phase during the synthesis.