期刊文献+
共找到1,465篇文章
< 1 2 74 >
每页显示 20 50 100
Designing simple non-fused terthiophene-based electron acceptors for efficient organic solar cells
1
作者 Jiayu Li Kun Li +9 位作者 Zhe Mei Yu Chen Qian Xie Chenxu Yu Xuefeng Liu Yanqi Wang Yishi Wu Qing Liao Cunbin An Hongbing Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期501-508,共8页
Low-cost photovoltaic materials are essential for realizing large-scale commercial applications of organic solar cells(OSCs).However,highly efficient OSCs based on low-cost photovoltaic materials are scarce due to a d... Low-cost photovoltaic materials are essential for realizing large-scale commercial applications of organic solar cells(OSCs).However,highly efficient OSCs based on low-cost photovoltaic materials are scarce due to a deficiency in understanding the structure-property relationship.Herein,we investigated two low-cost terthiophene-based electron acceptors,namely,3TC8 and 3TEH,with 3,4-bis(octan-3-yloxy)thiophene,differing only in the alkylated thiophene-bridges.Both acceptors exhibit low optical gaps(∼1.43 eV)and possess deep highest occupied molecular orbital(HOMO)levels(∼−5.8 eV).Notably,the single-crystal structure of 3TEH demonstrates highly planar conjugated backbone and strongπ-πstacking between intermolecular terminal groups,attributed to the presence of the bulky alkylated noncovalently conformational locks.Upon utilizing both acceptors to fabricate OSCs,the 3TC8-based device exhibited a power conversion efficiency(PCE)of 11.1%,while the 3TEH-based OSC demonstrated an excellent PCE of 14.4%.This PCE is the highest among OSCs based on terthiophene-containing electron acceptors.These results offer a new strategy for designing low-cost electron acceptors for highly efficient OSCs. 展开更多
关键词 Organic solarcells Low cost TERTHIOPHENE Non-fused electron acceptor
下载PDF
End-group modulation of phenazine based non-fullerene acceptors for efficient organic solar cells with high open-circuit voltage
2
作者 Yahui Zhang Yafeng Li +7 位作者 Ruixiang Peng Yi Qiu Jingyu Shi Zhenyu Chen Jinfeng Ge Cuifen Zhang Zheng Tang Ziyi Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期461-468,I0011,共9页
Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increa... Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increasing optical absorption,refining energy levels,and improving molecular packing in organic semiconductors.Herein,a series of NFAs(Pz IC-4H,Pz IC-4F,Pz IC-4Cl,Pz IC-2Br)with phenazine as the central core and with/without halogen-substituted(dicyanomethylidene)-indan-1-one(IC)as the electron-accepting end group were synthesized,and the effect of end group matched phenazine central unit on the photovoltaic performance was systematically studied.Synergetic photophysical and morphological analyses revealed that the PM6:Pz IC-4F blend involves efficient exciton dissociation,higher charge collection and transfer rates,better crystallinity,and optimal phase separation.Therefore,OSCs based on PM6:Pz IC-4F as the active layer exhibited a PCE of 16.48%with an open circuit voltage(Voc)and energy loss of 0.880 V and 0.53 e V,respectively.Accordingly,this work demonstrated a promising approach by designing phenazine-based NFAs for achieving high-performance OSCs. 展开更多
关键词 Organic solar cells Non-fullerene acceptor PHENAZINE Central core End group
下载PDF
Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
3
作者 张凯彦 宋朋 +1 位作者 马凤才 李源作 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期575-587,共13页
The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valu... The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs. 展开更多
关键词 organic solar cells density functional theory chlorophyll derivative non-fullerene acceptors
下载PDF
取代基对IDICR系列分子激发态性质的影响
4
作者 陈舒文 昝凤娇 +6 位作者 王镛涵 刘国魁 韦瑶瑶 李云志 周广丽 冷霞 夏其英 《原子与分子物理学报》 CAS 北大核心 2025年第4期15-19,共5页
有机太阳能电池中受体材料的研究是当今热门研究方向之一,其中非富勒烯受体材料因具有良好的平面性以及较强的分子内电荷转移效应,在近年来受到了更为广泛的关注.IDICR系列分子为一种新型的非富勒烯受体,通过改变它的分子结构可以达到... 有机太阳能电池中受体材料的研究是当今热门研究方向之一,其中非富勒烯受体材料因具有良好的平面性以及较强的分子内电荷转移效应,在近年来受到了更为广泛的关注.IDICR系列分子为一种新型的非富勒烯受体,通过改变它的分子结构可以达到使其具有更高效能的目的,本文构建IDICR、IDIC1和eh-IDTBR分子,用密度泛函理论(DFT)和含时密度泛函理论(TDDFT)方法计算了三种分子的基态和激发态性质,发现取代基改变会引起附近原子间键长发生变化,最低激发态的能量值以及激发态主要发生的跃迁类型也发生了改变,并且随着溶剂的极性增大,分子的最高吸收峰会发生红移. 展开更多
关键词 有机太阳能电池 激发态 非富勒烯受体
下载PDF
A 3-D Hybrid Framework {[(dafone)PbI_2](dafone)_2}_n Constructed from Weak Interactions by Introducing Aromatic H-bond Acceptors: Synthesis and Theoretical Study 被引量:2
5
作者 李俊波 李浩宏 +3 位作者 陈之荣 陈小波 吴艳玲 董海军 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第11期1387-1392,共6页
A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109... A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure. 展开更多
关键词 dafone weak interactions aromatic hydrogen bond acceptors DFT calculation
下载PDF
Polymer acceptors for all-polymer solar cells 被引量:3
6
作者 Xiaofei Ji Zuo Xiao +2 位作者 Huiliang Sun Xugang Guo Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2021年第8期4-7,共4页
Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and sm... Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26]. 展开更多
关键词 POLYMER acceptors HETEROJUNCTION
下载PDF
Non-fullerene small molecule electron acceptors for high-performance organic solar cells 被引量:1
7
作者 Hao Lin Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期990-1016,共27页
Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the i... Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future. 展开更多
关键词 Organic solar cells Non-fullerene Electron acceptors Bulk heterojunction
下载PDF
Nanomorphology in A–D–A type small molecular acceptors-based bulk heterojunction polymer solar cells 被引量:1
8
作者 Delong Liu Ying Zhang Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期104-123,I0001,I0005,共22页
Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depend... Recent developments in acceptor–donor–acceptor(A–D–A) type non-fullerene acceptors have led to substantial improvements in bulk-heterojunction polymer solar cells efficiency. The device performance strongly depends on photoactive layer morphology, as the molecular packing, donor–acceptor interface and phase separation significantly affect the charge-transfer states and charge carrier dynamics. In this review, we start with a brief introduction of the techniques most effectively utilized to characterize multiphase morphology. Then, we summarize recent progress in A–D–A type acceptors, with the emphasis on understanding the molecular structure–morphology–performance relationships. Finally, an outlook on correlating morphological characteristics with photovoltage losses is presented for further improving device performance. 展开更多
关键词 Polymer solar cells BULK HETEROJUNCTION Nanomorphology Non-fullerene ACCEPTOR A–D–A TYPE SMALL molecules
下载PDF
A new perspective to develop regiorandom polymer acceptors with high active layer ductility,excellent device stability,and high efficiency approaching 17% 被引量:4
9
作者 Qunping Fan Ruijie Ma +10 位作者 Wenyan Su Qinglian Zhu Zhenghui Luo Kai Chen Yabing Tang Francis RLin Yuxiang Li He Yan Chuluo Yang Alex K.-Y.Jen Wei Ma 《Carbon Energy》 SCIE CSCD 2023年第2期216-224,共9页
The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethyli... The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications. 展开更多
关键词 all-polymer solar cells CHLORINATION DUCTILITY power conversion efficiency regiorandom polymer acceptors
下载PDF
Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells 被引量:3
10
作者 Qiaonan Chen Yung Hee Han +12 位作者 Leandro R.Franco Cleber F.N.Marchiori Zewdneh Genene CMoyses Araujo Jin-Woo Lee Tan Ngoc-Lan Phan Jingnan Wu Donghong Yu Dong Jun Kim Taek-Soo Kim Lintao Hou Bumjoon J.Kim Ergang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期164-177,共14页
All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)in... All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs. 展开更多
关键词 All-polymer solar cells Flexible conjugation-break spacers Mechanical robustness Polymer acceptors Stretchability
下载PDF
Effect of electron acceptors H_2O_2 and O_2 on the generated reactive oxygen species ~1O_2 and OH~· in TiO_2-catalyzed photocatalytic oxidation of glycerol 被引量:2
11
作者 Trin Jedsukontorn Vissanu Meeyoo +1 位作者 Nagahiro Saito Mali Hunsom 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1975-1981,共7页
The effect of the electron acceptors H2O2 and O2 on the type of generated reactive oxygen species(ROS),and glycerol conversion and product distribution in the TiO2-catalyzed photocatalytic oxidation of glycerol was ... The effect of the electron acceptors H2O2 and O2 on the type of generated reactive oxygen species(ROS),and glycerol conversion and product distribution in the TiO2-catalyzed photocatalytic oxidation of glycerol was studied at ambient conditions.In the absence of an electron acceptor,only HO^·radicals were generated by irradiated UV light and TiO2.However,in the presence of the two electron acceptors,both HO^· radical and ^1O2 were produced by irradiated UV light and TiO2 in different concentrations that depended on the concentration of the electron acceptor.The use of H2O2 as an electron acceptor enhanced glycerol conversion more than O2.The type of generated value-added compounds depended on the concentration of the generated ROS. 展开更多
关键词 Glycerol oxidation Titanium dioxide PHOTOCATALYST Electron acceptor
下载PDF
Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability 被引量:4
12
作者 Pengqi Li Xianyi Meng +10 位作者 Ke Jin Zhiwei Xu Jianqi Zhang Lixiu Zhang Chuang Niu Furui Tan Chenyi Yi Zuo Xiao Yaqing Feng Guan-Wu Wang Liming Ding 《Carbon Energy》 SCIE CAS CSCD 2023年第1期123-133,共11页
The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic perf... The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic performance is still under debate.In this study,two Y6-like acceptors BDOTP-1 and BDOTP-2 were designed.Different from previous Y6-type acceptors featuring an A–D–Aʹ–D–A structure,BDOTP-1,and BDOTP-2 have no electron-deficient Aʹfragment in the core unit.Instead,there is an electron-rich dibenzodioxine fragment in the core.Although this modification leads to a marked change in the molecular dipole moment,electrostatic potential,frontier orbitals,and energy levels,BDOTP acceptors retain similar three-dimensional packing capability as Y6-type acceptors due to the similar banana-shaped molecular configuration.BDOTP acceptors show good performance in OSCs.High PCEs of up to 18.51%(certified 17.9%)are achieved.This study suggests that the banana-shaped configuration instead of the A–D–Aʹ–D–A structure is likely to be the determining factor in realizing high photovoltaic performance. 展开更多
关键词 3D packing capability core fragment molecular configuration nonfullerene acceptors organic solar cells
下载PDF
Recent advances and prospects of asymmetric non-fullerene small molecule acceptors for polymer solar cells 被引量:2
13
作者 Liu Ye Weiyu Ye Shiming Zhang 《Journal of Semiconductors》 EI CAS CSCD 2021年第10期128-147,共20页
Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy... Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy to improve the performance of polymer solar cells.The asymmetric design of the molecule is very beneficial for exciton dissociation and charge transport and will also fine-tune the molecular energy level to adjust the open-circuit voltage(Voc)further.The influence on the absorption range and absorption intensity will cause the short-circuit current density(Jsc)to change,resulting in higher device performance.The effect on molecular aggregation and molecular stacking of asymmetric structures can directly change the microscopic morphology,phase separation size,and the active layer's crystallinity.Very recently,thanks to the ingenious design of active layer materials and the optimization of devices,asymmetric non-fullerene polymer solar cells(A-NF-PSCs)have achieved remarkable development.In this review,we have summarized the latest developments in asymmetric small molecule acceptors(A-NF-SMAs)with the acceptor-donor-acceptor(A-D-A)and/or acceptor-donor-acceptor-donor-acceptor(A-D-A-D-A)structures,and the advantages of asymmetric small molecules are explored from the aspects of charge transport,molecular energy level and active layer accumulation morphology. 展开更多
关键词 polymer solar cells non-fullerene acceptors small asymmetric molecules
下载PDF
Green‑Solvent Processed Blade‑Coating Organic Solar Cells with an Efficiency Approaching 19%Enabled by Alkyl‑Tailored Acceptors 被引量:2
14
作者 Hairui Bai Ruijie Ma +23 位作者 Wenyan Su Top Archie Dela Pea Tengfei Li Lingxiao Tang Jie Yang Bin Hu Yilin Wang Zhaozhao Bi Yueling Su Qi Wei Qiang Wu Yuwei Duan Yuxiang Li Jiaying Wu Zicheng Ding Xunfan Liao Yinjuan Huang Chao Gao Guanghao Lu Mingjie Li Weiguo Zhu Gang Li Qunping Fan Wei Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期449-462,共14页
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr... Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development. 展开更多
关键词 Alkyl-tailored guest acceptors Blade-coating Green solvent processing Stability Organic solar cells
下载PDF
Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells 被引量:2
15
作者 Shaorong Huang Feiyan Wu +3 位作者 Zuoji Liu Yongjie Cui Lie Chena Yiwang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期63-68,I0003,共7页
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-... Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(V_(OC)) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs. 展开更多
关键词 All-polymer solar cells Polymer acceptor Functional atoms Power conversion efficiency
下载PDF
Isomeric Fluorene-based Heteroundecenes with Different Side Chains Anchoring Positions for Small Molecule Acceptors 被引量:1
16
作者 WANG Wei ZHAN Chun XIAO Shengqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第1期136-147,共12页
Two isomeric fluorene-based heteroundecenes of bis(thienocyclopenthieno[3,2-b]thieno)fluorene(BT2T-F)and bis(dithieno[3,2-b:2’,3’-d]thiophene)cyclopentafluorene(B3T-F)have been designed and synthesized.The side chai... Two isomeric fluorene-based heteroundecenes of bis(thienocyclopenthieno[3,2-b]thieno)fluorene(BT2T-F)and bis(dithieno[3,2-b:2’,3’-d]thiophene)cyclopentafluorene(B3T-F)have been designed and synthesized.The side chains of 4-hexylphenyl anchor on the 5th and 8th positions in B3T-F while on the 4th and 9th positions in BT2T-F,in which the former is closer to the center of the fused ring.The corresponding acceptor-donor-acceptor(A-D-A)type small molecule acceptors(SMAs)of BT2T-FIC and B3T-FIC were prepared by linking BT2T-F and B3T-F as fused ring donor units with the acceptor unit of 2-(5,6-difluoro-3-oxo-2,3-dihydroinden-1-ylidene)malononitrile(IC-2F),respectively.B3T-FIC presents a superior crystallinity with intense face-on π-π stacking in its neat film while BT2T-FIC is more disordered.When blended with PBDB-T-2Cl as a polymer donor,the optimized PBDB-T-2Cl:BT2T-FIC device exhibits an averaged power conversion efficiency(PCE)of 10.56%while only 7.53%in the PBDB-T-2Cl:B3T-FIC device.The improved short-circuit current(J_(sc))and fill factor(FF)of the PBDB-T-2Cl:BT2T-FIC device are the main contribution of its higher performance,which is attributed to its more efficient and balanced charge transport and better carrier recombination suppression.Given that BT2T-FIC blend and B3T-FIC blend films both take a preferential face-on orientatedπ-πstacking with comparable distances,the suitable SMA domain size obtained in the BT2T-FIC blend could account for its more efficient photovoltaic performance.These results highlight the importance of side-chain strategy in developing efficient SMAs with huge fused ring cores. 展开更多
关键词 polymer solar cells small molecule acceptor side chains MORPHOLOGY
下载PDF
Molecular design towards two-dimensional electron acceptors for efficient non-fullerene solar cells 被引量:1
17
作者 Yan Liu Zixian Liu +5 位作者 Zhicheng Hu Yuanying Liang Zhenfeng Wang Zhongxin Chen Fei Huang Yong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期190-198,共9页
Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular elec... Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells. 展开更多
关键词 Two-dimensional molecules Perylene diimide Electron acceptors Molecular design Non-fullerene solar cells
下载PDF
Design of ultranarrow-bandgap acceptors for efficient organic photovoltaic cells and highly sensitive organic photodetectors 被引量:1
18
作者 Ye Xu Tao Zhang +3 位作者 Huifeng Yao Jingwen Wang Pengqing Bi Jianhui Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期388-394,I0011,共8页
The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating hig... The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic(OPV)cells and highly sensitive near-infrared organic photodetectors(OPDs).By combining alkoxy modification and an asymmetric strategy,three narrowbandgap electronic acceptors(BTP-4F,DO-4F,and QO-4F)were synthesized with finely tuned molecular electrostatic potential(ESP)distributions.Through the careful modulation of electronic configurations,the optical absorption onsets of DO-4F and QO-4F exceeded 1μm.The experimental and theoretical results suggest that the small ESP of QO-4F is beneficial for achieving a low nonradiative voltage loss,while the large ESP of BTP-4F can help obtain high exciton dissociation efficiency.By contrast,the asymmetric acceptor DO-4F with a moderate ESP possesses balanced voltage loss and exciton dissociation,yielding the best power conversion efficiency of 13.6%in the OPV cells.OPDs were also fabricated based on the combination of PBDB-T:DO-4F,and the as-fabricated device outputs a high shot-noise-limited specific detectivity of 3.05×10^(13) Jones at 850 nm,which is a very good result for near-infrared OPDs.This work is anticipated to provide a rational way of designing high-performance ultranarrow-bandgap organic semiconductors by modulating the molecular ESP. 展开更多
关键词 Ultranarrow-bandgap acceptors Asymmetric design strategies Molecular electrostatic potentials Exciton dissociation Non-radiative energy loss
下载PDF
Characterization of phosphorus removal bacteria in (AO)^2 SBR system by using different electron acceptors 被引量:1
19
作者 蒋轶锋 王琳 +3 位作者 余颖 王宝贞 刘硕 沈峥 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期155-159,共5页
Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)^2 SBR (anaerobic... Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)^2 SBR (anaerobic-aerobic-anoxic-aerobic sequencing batch reactor) was thereby employed to enrich denitrifying phosphorus removal bacteria for simultaneously removing phosphorus and nitrogen via auoxic phosphorus uptake, Ammonium oxidation was controlled at the first phase of the nitrification process. Nitrite-inhibition batch tests illustrated that nitrite was not an inhibitor to phosphorus uptake process, but served as an alternative electron acceptor to nitrate and oxygen if the concentration was under the inhibition level of 40mg NO2 - N·L^- 1. It implied that in addition to the two well-accepted groups of phosphorus removal bacterium ( one can only utilize oxygen as electron acceptor, P1, while the other can use both oxygen and nitrate as electron acceptor, P2 ), a new group of phosphorus removal bacterium P3, which could use oxygen, nitrate and nitrite as electron acceptor to take up phosphorus were identified in the test system. To understand (AO)^2 SBR sludge better, the relative population of the different bacteria in this system, plus another A/O SBR sludge ( seed sludge) were respectively estimated by the phosphorus uptake batch tests with either oxygen or nitrate or nitrite as electron acceptor. The results demonstrated that phosphorus removal capability of (AO)^2 SBR sludge had a little degradation after A/O sludge was cultivated in the (AO)^2 mode over a long period of time. However, deuitrifying phosphorus removal bacteria ( P2 and P3 ) was significantly enriched showed by the relative population of the three types of bacteria, which implied that energy for aeration and COD consumption could be reduced in theory. 展开更多
关键词 phosphorus removal bacteria electron acceptor NITRITE NITRATE OXYGEN (AO)^2 SBR
下载PDF
Design and Synthesis of Acceptor-Donor-Acceptor Type Non-Fullerene Acceptors Using Oxindole-Based Bridge for Polymer Solar Cells Applications 被引量:1
20
作者 GUO Yuqing HUANG Jun +6 位作者 LI Zheng WU Hongbo WANG Jing TANG Zheng MA Zaifei WANG Ming ZHU Zhijia 《Journal of Donghua University(English Edition)》 CAS 2022年第3期272-280,共9页
Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduc... Two acceptor-donor-acceptor(A-D-A)type non-fullerene acceptors(namely WH1 and WH7)containing the oxindole-based bridge are designed and synthesized for polymer solar cells(PSCs)applications.The bridge unit is introduced through a precursor(6-bromo-1-octylindoline-2,3-dione)that contains both bromine and carbonyl and provides the feasibility of the Pd-catalyzed cross-coupling reaction and the Knoevenagel condensation,respectively.This facile synthetic approach exhibits the potential to gain high performance non-fullerene acceptors through extendingπ-conjugated backbone with strong light-absorbing building blocks.The synthesis and properties of WH1 and WH7 are demonstrated with different endcap units,then PSCs are fabricated using PBDB-T:WH1 and PBDB-T:WH7 as the active layers,and attain an average power conversion efficiency(PCE)of 2.58%and 6.24%,respectively.Further device physics studies afford the deep insight of structure variation influence on the device performance.This work provides a facile non-fullerene acceptor design strategy and shows how structure variations impact the PSC performance. 展开更多
关键词 non-fullerene acceptor polymer solar cell(PSC) conjugated molecules donor-acceptor(D-A) narrow bandgap
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部