We study the stability of accretion disc around magnetised stars. Starting from the equations of magnetohydrodynamics we derive equations for linearized perturbation of geometrically thin, optically thick axisymmetric...We study the stability of accretion disc around magnetised stars. Starting from the equations of magnetohydrodynamics we derive equations for linearized perturbation of geometrically thin, optically thick axisymmetric accretion disc with an internal dynamo around magnetized stars. The structure and evolution of such discs are governed by an evolution equation for matter surface density ∑(R,T). Using the time-dependent equations for an accretion disc we do a linear stability analysis of our steady disc solutions in the presence of the magnetic field generated due to an internal dynamo.展开更多
For a rotating inhomogeneous circular disk a way of calculating dynamics of boundary shape perturbation and failure of bearing capacity is proposed in terms of small parameter method. Characteristic equation of plasti...For a rotating inhomogeneous circular disk a way of calculating dynamics of boundary shape perturbation and failure of bearing capacity is proposed in terms of small parameter method. Characteristic equation of plastic zone critical radius is obtained as a first approximation. A formula of critical angular velocity is derived which determines the stability loss of the disc according to the self-balanced form. Efficiency of the proposed method is shown by an illustrative example considered in Section 7. Values of critical angular velocity of rotation are found numerically for different parameters of the disc.展开更多
A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is suggested within the theory of perfect plasticity with the help of small parameter method. A characteristi...A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is suggested within the theory of perfect plasticity with the help of small parameter method. A characteristic equation for a critical radius of a plastic zone is obtained as a first approximation. The formula for the critical angular velocity, determining the stability loss of the disc according to the self-balanced form, is derived. The method using which we can take into account the disc’s geometry and loading parameters is also specified. The efficiency of the proposed method is shown in Section 5 while considering an illustrative example. The values of critical angular velocity of rotating are found numerically for different parameters of the disc.展开更多
文摘We study the stability of accretion disc around magnetised stars. Starting from the equations of magnetohydrodynamics we derive equations for linearized perturbation of geometrically thin, optically thick axisymmetric accretion disc with an internal dynamo around magnetized stars. The structure and evolution of such discs are governed by an evolution equation for matter surface density ∑(R,T). Using the time-dependent equations for an accretion disc we do a linear stability analysis of our steady disc solutions in the presence of the magnetic field generated due to an internal dynamo.
文摘For a rotating inhomogeneous circular disk a way of calculating dynamics of boundary shape perturbation and failure of bearing capacity is proposed in terms of small parameter method. Characteristic equation of plastic zone critical radius is obtained as a first approximation. A formula of critical angular velocity is derived which determines the stability loss of the disc according to the self-balanced form. Efficiency of the proposed method is shown by an illustrative example considered in Section 7. Values of critical angular velocity of rotation are found numerically for different parameters of the disc.
文摘A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is suggested within the theory of perfect plasticity with the help of small parameter method. A characteristic equation for a critical radius of a plastic zone is obtained as a first approximation. The formula for the critical angular velocity, determining the stability loss of the disc according to the self-balanced form, is derived. The method using which we can take into account the disc’s geometry and loading parameters is also specified. The efficiency of the proposed method is shown in Section 5 while considering an illustrative example. The values of critical angular velocity of rotating are found numerically for different parameters of the disc.