期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Laboratory radiative accretion shocks on GEKKO XⅡlaser facility for POLAR project
1
作者 L.Van Box Som E.Falize +20 位作者 M.Koenig Y.Sakawa B.Albertazzi E Barroso J.-M.Bonnet-Bidaud C.Busschaert A.Ciardi Y.Hara N.Katsuki R.Kumar E Lefevre C.Michaut Th.Michel T.Miura T.Morita M.Mouchet G.Rigon T.Sano S.Shiiba H.Shimogawara S.Tomiya 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第2期181-188,共8页
A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experi... A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2 D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target,a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities. 展开更多
关键词 accretion processes high power laser HYDRODYNAMICS laboratory astrophysics
原文传递
Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR
2
作者 B. Albertazzi E. Falize +24 位作者 A. Pelka E Brack E Kroll R. Yurchak E. Brambrink E Mabey N. Ozaki S. Pikuz L. Van Box Som J. M. Bonnet-Bidaud J. E. Cross E. Filippov G. Gregori R. Kodama M. Mouchet T. Morita Y. Sakawa R. E Drake C. C. Kuranz M. J.-E. Manuel C. Li E Tzeferacos D. Lamb U. Schramm M. Koenig 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第3期36-49,共14页
The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ... The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I - 2 × 10^14 W. cm-2) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15-20 4- 5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type. 展开更多
关键词 accretion processes high-power laser HYDRODYNAMICS laboratory astrophysics POLAR radiative shocks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部