We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neu...We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an out- ward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets trans- formed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly ad- vection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) is, the higher the density and temperature are in the disks. We deal with accre- tion disks with relatively low accretion rates: 0.001 Mo s-1 ~ 3)/~ 0.01 Mo S--1 and hence these disks are predominantly advection dominated. We use He-rich and Si- rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31p, 39K, 43Sc' 35C1 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthe- sized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.展开更多
The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accreti...The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity.Hence,any viscosity in such systems must be due to turbulence,arguably governed by magnetorotational instability,especially when temperature T ≥10 5.However,such disks around quiescent cataclysmic variables,protoplanetary and star-forming disks,and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature,and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability.This flow is similar to plane Couette flow including the Coriolis force,at least locally.What drives their turbulence and then transport,when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 ≤νt≤ 0.1,which can explain transport in accretion flows.展开更多
There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from th...There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between rh (m ~ /~f//~fEdd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates rh = M/MEdd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity (rh = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of rh. We find a slgmficant correlation between the denved of and the observed line width of Hβ, FWHMα m^-0.aT, which almost overlaps the disk-corona model calculations, if the viscosity a α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.展开更多
We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion di...We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, syn- chrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature ~10^8 - 10^9.5 K compared to the hot protons of temperature ~10^10.2 - 10^11.8 K in the range of the accretion rate in Eddington units 0.01≤M≤ 100. Therefore, the solutions may potentially explain the hard X-rays and the γ-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed luminosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.展开更多
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the mot...We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.展开更多
Simultaneous multi-wavelength observations have revealed complex variability in AGNs. To explain the variability we considered a theoretical model consisting of an inner hot comptonizing corona and an outer thin accre...Simultaneous multi-wavelength observations have revealed complex variability in AGNs. To explain the variability we considered a theoretical model consisting of an inner hot comptonizing corona and an outer thin accretion disk, with interactions between the two components in the form of comptonization and reprocessing. We found that the variability of AGNs is strongly affected by the parameters of the model, namely, the truncated disk radius rmin, the corona radius rs, the temperature KTe and the optical depth TO of the corona. We applied this model to the two best observed Seyfert 1 galaxies, NGC 5548 and NGC 4051. Our model can reproduce satisfactory the observed SEDs. Our fits indicate that NGC 5548 may have experienced dramatic changes in physical parameters between 1989-1990 and 1998, and that NGC 4051 has a much larger truncated disk radius (700 Schwarzschild radii) than NGC 5548 (several tens of Schwarzschild radii). Since we adopted a more refined treatment of the comptonization process rather than simply assuming a cut-off power law, our results should be more reasonable than the previous ones.展开更多
We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By consider- ing an initial magnetic field, using the PLUTO code, w...We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By consider- ing an initial magnetic field, using the PLUTO code, we perform a numerical magne- tohydrodynamic simulation in order to study the effect of Hall diffusion on the physi- cal structure of the disk. Current density and temperature of the disk are significantly modified by Hall diffusion, but the global structure of the disk is not substantially affected. The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.展开更多
We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self-gravity of disks should be considered.We derive and analyse the dispersion relations with the effect of self-...We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self-gravity of disks should be considered.We derive and analyse the dispersion relations with the effect of self-gravity.Results show that self-gravity extends the forbidden region of the wave propagation:for high frequency p-modes,self-gravity makes the wavelength shorter and the group velocity larger;for low frequency g-modes,the effect is opposite.展开更多
The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time fo...The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.展开更多
A group of scientists reported in Nature their latest discovery of a large amount of hydrogen and helium gases on the outer brim of the accretion disks surrounding the central supermassive black holes in a sample of q...A group of scientists reported in Nature their latest discovery of a large amount of hydrogen and helium gases on the outer brim of the accretion disks surrounding the central supermassive black holes in a sample of quasars. Their strongly redshifted and broadened absorption lines indicate that they are moving at freefall-like speeds and hence deemed prey of the mighty gravitation of the supermassive black holes.展开更多
River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss...River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.展开更多
We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide soli...We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.展开更多
A model of an inhomogeneous accretion flow,in which cold clumps are surrounded by hot gas or corona,has been proposed to explain the spectral features of black hole X-ray binaries.In this work,we try to find possible ...A model of an inhomogeneous accretion flow,in which cold clumps are surrounded by hot gas or corona,has been proposed to explain the spectral features of black hole X-ray binaries.In this work,we try to find possible observational features in the continuum that can indicate the existence of clumps.The spectra of an inhomogeneous accretion flow are calculated via the Monte Carlo method.Since the corresponding accretion flow is unsteady and complex,the accretion flow is described by a set of free parameters,the ranges of which can include the real cases.The influences of the parameters are investigated.It is found that the thermal component of the spectra deviates from multi-color black body spectra in the middle power-law part.On one hand,a warp appears due to the gaps between the clumps and the outer cold disk,and on the other hand,the slope of the line connecting the thermal peaks deviates from 4/3.The warp feature,as well as the correlation between the thermal peak at higher frequency and the spectral index,possibly indicate the existence of clumps,and are worthy of further investigation with more self-consistent models.展开更多
Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition,indicating additional parameter...Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition,indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions.It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work,we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary(LMXB) 4 U 1636–536 based on data from the All Sky Monitor(ASM) on board RXTE,the Gas Slit Camera(GSC) on board MAXI and the Burst Alert Telescope(BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares,which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.展开更多
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the a...Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.展开更多
Applying the timing tools of kilohertz quasi-periodic oscillations(k Hz QPOs)and cross-correlations,we study the influence of the magnetosphere-disk relation on the X-ray radiation process of GX 17+2.First,as the spec...Applying the timing tools of kilohertz quasi-periodic oscillations(k Hz QPOs)and cross-correlations,we study the influence of the magnetosphere-disk relation on the X-ray radiation process of GX 17+2.First,as the spectral state track of X-ray emission evolves along the horizontal branch(HB),the magnetosphere-disk radii of the source derived by k Hz QPOs shrink from r~24 km to r~18 km,while its average X-ray intensities in≤10 ke V and in≥10 ke V show the opposite evolutional trends.Moreover,this branch has been detected with the anti-correlations between the low-/high-energy(e.g.,2–5 ke V/16–30 ke V)X-rays.We suggest that in HB there may exist an X-ray radiation transfer process at the disk radii near the neutron star(NS),i.e.,~5–10 km away from the surface,which probably originates from the interaction between the corona or jet with high-energy X-rays and accretion disk with low-energy X-rays.Second,as the source evolves along the normal branch(NB)and along the flaring branch(FB),their average X-ray intensities in all~2–30 ke V show the monotonously decreasing and monotonously increasing trends,respectively.In addition,these two branches are both dominated by the positive correlations between the low-and high-energy(e.g.,2–5 ke V/16–30 ke V)X-rays.Moreover,the evolution along NB is accompanied by the shrinking of the magnetosphere-disk radii from r~18 km to r~16 km.We ascribe these phenomena to that as the shrinking of the accretion disk radius,the piled up accretion matter around the NS surface may trigger the radiation that produces both the low-and high-energy X-rays simultaneously,and then form the branches of NB and FB.展开更多
We explore the time evolution of radiatively-inefficient accretion flows. Since these types of accretion flows are convectively unstable, we also study the ef- fects of convection in the present model. The effects of ...We explore the time evolution of radiatively-inefficient accretion flows. Since these types of accretion flows are convectively unstable, we also study the ef- fects of convection in the present model. The effects of convection are applied to equations describing angular momentum and energy. In analogy to the traditional c^- prescription, we introduce the convection parameter c^e to study the influences of con- vection on physical quantities. The model is studied in two cases: the transport of angular momentum due to convection inward and outward. We found the physical variables are sensitive to the parameter C^c and are also dependent on the direction of angular momentum that is transported by convection. As for angular momentum transfer inward, the accretion flow can be convectively dominated and radial infall velocity becomes zero. Moreover, we found the radial dependence of the density and radial velocity takes an intermediate place between steady state radiatively-inefficient accretion flow and steady state advection-dominated accretion flow. This property is in accord with direct numerical simulation of radiatively-inefficient accretion flows.展开更多
The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accreti...The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solu- tions at high turbulent viscosity parameter a(〉0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field Bp is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-r2BBz) increases with the increase in M. Bp, -r2BBz as well as the plasma beta/3p get strongly augmented with the increase in the value of a, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.展开更多
We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is power...We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is powered by a rotating black hole (BH) invoking the BZ process. The second stage is a quiet stage, in which the BZ process is shut off, and the accretion onto the BH is depressed by the torque exerted by the magnetic coupling (MC) process. Part of the rotational energy transported by the MC process from the BH is stored in the disk as magnetic energy. In the third stage, the MC process is shut off when the magnetic energy in the disk accumulates and triggers magnetic instability. At this moment, the hyperaccretion process may set in, and the jet launched in this restarted central engine generates the observed X-ray flares. This model can account for the energies and timescales of GRBs with X-ray flares observed in early afterglows.展开更多
Many models of gamma-ray bursts suggest a common central engine; a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙s^-1, the inner region of the disk is cooled b...Many models of gamma-ray bursts suggest a common central engine; a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙s^-1, the inner region of the disk is cooled by neutrino emission and large amounts of its binding energy are liberated, which could trigger the fireball. We improve the neutrino- dominated accreting flows by including the effects of magnetic fields. We find that more than half of the liberated energy can be extracted directly by the large-scale magnetic fields in the disk, and it turns out that the temperature of the disk is a bit lower than the neutrino-dominated accreting flows without magnetic field. Therefore, the outflows are magnetically-dominated rather than neutrino dominated. In our model, the neutrino mechanism can fuel some GRBs (not the brightest ones), but cannot fuel X-ray flares. The magnetic processes (both BZ and electromagnetic luminosity from a disk) are viable mechanisms for most of GRBs and their following X-ray flares.展开更多
基金partly supported by the ISRO grant ISRO/RES/2/367/10-11
文摘We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an out- ward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets trans- formed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly ad- vection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) is, the higher the density and temperature are in the disks. We deal with accre- tion disks with relatively low accretion rates: 0.001 Mo s-1 ~ 3)/~ 0.01 Mo S--1 and hence these disks are predominantly advection dominated. We use He-rich and Si- rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31p, 39K, 43Sc' 35C1 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthe- sized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.
基金supported by a project,Grant No.SR/S2HEP12/2007funded by Department of Science and Technology,India
文摘The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity.Hence,any viscosity in such systems must be due to turbulence,arguably governed by magnetorotational instability,especially when temperature T ≥10 5.However,such disks around quiescent cataclysmic variables,protoplanetary and star-forming disks,and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature,and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability.This flow is similar to plane Couette flow including the Coriolis force,at least locally.What drives their turbulence and then transport,when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 ≤νt≤ 0.1,which can explain transport in accretion flows.
基金Supported by the National Natural Science Foundation of China.
文摘There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between rh (m ~ /~f//~fEdd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates rh = M/MEdd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity (rh = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of rh. We find a slgmficant correlation between the denved of and the observed line width of Hβ, FWHMα m^-0.aT, which almost overlaps the disk-corona model calculations, if the viscosity a α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.
基金supported by a project,Grant No.SR/S2HEP12/2007,funded by DST,India
文摘We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, syn- chrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature ~10^8 - 10^9.5 K compared to the hot protons of temperature ~10^10.2 - 10^11.8 K in the range of the accretion rate in Eddington units 0.01≤M≤ 100. Therefore, the solutions may potentially explain the hard X-rays and the γ-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed luminosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.
基金supported by the Nuffield Foundation through the Research Bursary program
文摘We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
基金Supported by the National Natural Science Foundation of China.
文摘Simultaneous multi-wavelength observations have revealed complex variability in AGNs. To explain the variability we considered a theoretical model consisting of an inner hot comptonizing corona and an outer thin accretion disk, with interactions between the two components in the form of comptonization and reprocessing. We found that the variability of AGNs is strongly affected by the parameters of the model, namely, the truncated disk radius rmin, the corona radius rs, the temperature KTe and the optical depth TO of the corona. We applied this model to the two best observed Seyfert 1 galaxies, NGC 5548 and NGC 4051. Our model can reproduce satisfactory the observed SEDs. Our fits indicate that NGC 5548 may have experienced dramatic changes in physical parameters between 1989-1990 and 1998, and that NGC 4051 has a much larger truncated disk radius (700 Schwarzschild radii) than NGC 5548 (several tens of Schwarzschild radii). Since we adopted a more refined treatment of the comptonization process rather than simply assuming a cut-off power law, our results should be more reasonable than the previous ones.
文摘We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By consider- ing an initial magnetic field, using the PLUTO code, we perform a numerical magne- tohydrodynamic simulation in order to study the effect of Hall diffusion on the physi- cal structure of the disk. Current density and temperature of the disk are significantly modified by Hall diffusion, but the global structure of the disk is not substantially affected. The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.
基金Supported by the National Natural Science Foundation of China under Grant No.19973005.
文摘We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self-gravity of disks should be considered.We derive and analyse the dispersion relations with the effect of self-gravity.Results show that self-gravity extends the forbidden region of the wave propagation:for high frequency p-modes,self-gravity makes the wavelength shorter and the group velocity larger;for low frequency g-modes,the effect is opposite.
基金Supported by the National Natural Science Foundation of China under Grant No.19773005.
文摘The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.
文摘A group of scientists reported in Nature their latest discovery of a large amount of hydrogen and helium gases on the outer brim of the accretion disks surrounding the central supermassive black holes in a sample of quasars. Their strongly redshifted and broadened absorption lines indicate that they are moving at freefall-like speeds and hence deemed prey of the mighty gravitation of the supermassive black holes.
文摘River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.
基金supported by the Asher Fund for Space Research at the Technionthe E. and J. Bishop Research Fund at the Technion
文摘We propose that sub-Keplerian accretion belts around stars might launch jets. The sub-Keplerian inflow does not form a rotationally supported accretion disk, but it rather reaches the accreting object from a wide solid angle. The basic ingredients of the flow are a turbulent region where the accretion belt interacts with the accreting object via a shear layer, and two avoidance regions on the poles where the accretion rate is very low. A dynamo that is developed in the shear layer amplifies magnetic fields to high values. It is likely that the amplified magnetic fields form polar outflows from the avoidance regions. Our speculative belt-launched jets model has implications on a rich variety of astrophysical objects, from the removal of common envelopes to the explosion of core collapse supernovae by jittering jets.
基金supported by the National Natural Science Foundation of China under grants 11333004, 11133005, 11573051 and U1531130the Fundamental Research Funds for the Central Universities under grant 20720150032+5 种基金supported in part by the Youth Innovation Promotion Association of CAS (id. 2016243)the National Basic Research Program of China (973 Program, grant 2014CB845800)the Strategic Priority Research Program ‘The Emergence of Cosmological Structures’ of CAS (grant XDB09000000)the CAS/SAFEA International Partnership Program for Creative Research Teamsthe Natural Science Foundation of Shanghai (grant 17ZR1435800)sponsored in part by Shanghai Sailing Program (No. 17YF1422600)
文摘A model of an inhomogeneous accretion flow,in which cold clumps are surrounded by hot gas or corona,has been proposed to explain the spectral features of black hole X-ray binaries.In this work,we try to find possible observational features in the continuum that can indicate the existence of clumps.The spectra of an inhomogeneous accretion flow are calculated via the Monte Carlo method.Since the corresponding accretion flow is unsteady and complex,the accretion flow is described by a set of free parameters,the ranges of which can include the real cases.The influences of the parameters are investigated.It is found that the thermal component of the spectra deviates from multi-color black body spectra in the middle power-law part.On one hand,a warp appears due to the gaps between the clumps and the outer cold disk,and on the other hand,the slope of the line connecting the thermal peaks deviates from 4/3.The warp feature,as well as the correlation between the thermal peak at higher frequency and the spectral index,possibly indicate the existence of clumps,and are worthy of further investigation with more self-consistent models.
基金supported in part by the National Program on Key Research and Development Project (Grant No.2016YFA0400804)the National Natural Science Foundation of China (Grant Nos.11103062,U1531130 and 11333005)+1 种基金support by the FAST Scholar fellowshipsupported by Special Funding for Advanced Users,budgeted and administered by the Center for Astronomical Mega-Science,Chinese Academy of Sciences (CAMS)
文摘Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition,indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions.It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work,we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary(LMXB) 4 U 1636–536 based on data from the All Sky Monitor(ASM) on board RXTE,the Gas Slit Camera(GSC) on board MAXI and the Burst Alert Telescope(BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares,which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.
基金supported by the National Key Research and Development Program of China(2016YFA0400803)the National Natural Science Foundation of China under grant No.11773015Project U1838201 supported by NSFC and CAS。
文摘Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.
基金supported by the National Natural Science Foundation of China(Grant Nos.12163001,U1938117 and U1731238)the Guizhou Provincial Science and Technology Foundation(Grant No.[2020]1Y016)。
文摘Applying the timing tools of kilohertz quasi-periodic oscillations(k Hz QPOs)and cross-correlations,we study the influence of the magnetosphere-disk relation on the X-ray radiation process of GX 17+2.First,as the spectral state track of X-ray emission evolves along the horizontal branch(HB),the magnetosphere-disk radii of the source derived by k Hz QPOs shrink from r~24 km to r~18 km,while its average X-ray intensities in≤10 ke V and in≥10 ke V show the opposite evolutional trends.Moreover,this branch has been detected with the anti-correlations between the low-/high-energy(e.g.,2–5 ke V/16–30 ke V)X-rays.We suggest that in HB there may exist an X-ray radiation transfer process at the disk radii near the neutron star(NS),i.e.,~5–10 km away from the surface,which probably originates from the interaction between the corona or jet with high-energy X-rays and accretion disk with low-energy X-rays.Second,as the source evolves along the normal branch(NB)and along the flaring branch(FB),their average X-ray intensities in all~2–30 ke V show the monotonously decreasing and monotonously increasing trends,respectively.In addition,these two branches are both dominated by the positive correlations between the low-and high-energy(e.g.,2–5 ke V/16–30 ke V)X-rays.Moreover,the evolution along NB is accompanied by the shrinking of the magnetosphere-disk radii from r~18 km to r~16 km.We ascribe these phenomena to that as the shrinking of the accretion disk radius,the piled up accretion matter around the NS surface may trigger the radiation that produces both the low-and high-energy X-rays simultaneously,and then form the branches of NB and FB.
文摘We explore the time evolution of radiatively-inefficient accretion flows. Since these types of accretion flows are convectively unstable, we also study the ef- fects of convection in the present model. The effects of convection are applied to equations describing angular momentum and energy. In analogy to the traditional c^- prescription, we introduce the convection parameter c^e to study the influences of con- vection on physical quantities. The model is studied in two cases: the transport of angular momentum due to convection inward and outward. We found the physical variables are sensitive to the parameter C^c and are also dependent on the direction of angular momentum that is transported by convection. As for angular momentum transfer inward, the accretion flow can be convectively dominated and radial infall velocity becomes zero. Moreover, we found the radial dependence of the density and radial velocity takes an intermediate place between steady state radiatively-inefficient accretion flow and steady state advection-dominated accretion flow. This property is in accord with direct numerical simulation of radiatively-inefficient accretion flows.
文摘The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solu- tions at high turbulent viscosity parameter a(〉0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field Bp is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-r2BBz) increases with the increase in M. Bp, -r2BBz as well as the plasma beta/3p get strongly augmented with the increase in the value of a, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.
基金the National Natural Science Foundation of China under Grant 10703002
文摘We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is powered by a rotating black hole (BH) invoking the BZ process. The second stage is a quiet stage, in which the BZ process is shut off, and the accretion onto the BH is depressed by the torque exerted by the magnetic coupling (MC) process. Part of the rotational energy transported by the MC process from the BH is stored in the disk as magnetic energy. In the third stage, the MC process is shut off when the magnetic energy in the disk accumulates and triggers magnetic instability. At this moment, the hyperaccretion process may set in, and the jet launched in this restarted central engine generates the observed X-ray flares. This model can account for the energies and timescales of GRBs with X-ray flares observed in early afterglows.
基金Supported by the National Natural Science Foundation of China.
文摘Many models of gamma-ray bursts suggest a common central engine; a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙s^-1, the inner region of the disk is cooled by neutrino emission and large amounts of its binding energy are liberated, which could trigger the fireball. We improve the neutrino- dominated accreting flows by including the effects of magnetic fields. We find that more than half of the liberated energy can be extracted directly by the large-scale magnetic fields in the disk, and it turns out that the temperature of the disk is a bit lower than the neutrino-dominated accreting flows without magnetic field. Therefore, the outflows are magnetically-dominated rather than neutrino dominated. In our model, the neutrino mechanism can fuel some GRBs (not the brightest ones), but cannot fuel X-ray flares. The magnetic processes (both BZ and electromagnetic luminosity from a disk) are viable mechanisms for most of GRBs and their following X-ray flares.