By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable ...By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.展开更多
Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects ...Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.展开更多
Source-contacting gas, which is also called basin-center gas, deep basin gas, is the tight-sand gas accumulation contacting closely to its source rocks. Having different accumulation mechanisms from conventional gas r...Source-contacting gas, which is also called basin-center gas, deep basin gas, is the tight-sand gas accumulation contacting closely to its source rocks. Having different accumulation mechanisms from conventional gas reservoirs that are formed by replacement way, the typical source-contacting gas reservoirs are formed by piston-typed migration forward way. Source-contacting gas accumulations exhibit a series of distinctly mechanic characteristics. According to the valid combination of these characteristics, the estimation for the type of discovered gas reservoirs or distributions of source-contacting gas reservoirs can be forecasted. The source-contacting gas is special for having no edge water or bottom water for gas and complicated gas-water relationships, which emphasizes the intimate association of reservoir rocks with source rocks, which is called the root of the gas reservoir. There are many basins having the mechanic conditions for source-contacting gas accumulations in China, which can be divided into three regions. Most of the basins with favorable accumulation conditions are located mainly in the central and western China. According to the present data, basins having source-contacting gas accumulations in China can be divided into three types, accumulation conditions and configuration relationships are the best in type A basins and they are the larger basins in central China. Type B basins with plain accumulation conditions exist primarily in eastern China and also the basins in western China. Accumulation conditions and exploration futures are worse in type C basins, which refer mainly to the small basins in southern China and China Sea basins. Main source-contacting gas basins in China are thoroughly discussed in this paper and the distribution patterns of source-contacting gas in five huge basins are discussed and forecasted.展开更多
Baise basin is a semi-graben type , pan-shaped faulted basin of Early Tertiary , in which carbonate lacustrine deposits and elastic lacustrine deposits developed . The assemblages of Gilbert-type delta-lakes ,littoral...Baise basin is a semi-graben type , pan-shaped faulted basin of Early Tertiary , in which carbonate lacustrine deposits and elastic lacustrine deposits developed . The assemblages of Gilbert-type delta-lakes ,littoral ,shallow and deep water fades are recognized . Based on grain size , the clastic lacustrine deposit systems can be grouped in three kinds of depositional sequences of progressive deposition : (1)from coarse to fine , (2)from fine to coarse and (3) from fine to coarse and then to fine agan . This was controlled mainly by hydrodynamic factor of lake bottom type .Lake shore was an important place for coal accumulation and peatmoor development . It had long time for coal accumulation and there was a very little amount of minerals into the basin ,and the thick coal layer and high quality coal developed m the zone where initial lake bottom was plan-like and the surface stream flow was weak .Peat accumulation advanced from the margin to the center of basin .Carbonate lakes contained much water ,very high preponderant contenis of coagel ,low inert contents and no fusinite in the coal .展开更多
Purpose:The study aimed to describe youth time-use compositions,focusing on time spent in shorter and longer bouts of sedentary behavior and physical activity(PA),and to examine associations of these time-use composit...Purpose:The study aimed to describe youth time-use compositions,focusing on time spent in shorter and longer bouts of sedentary behavior and physical activity(PA),and to examine associations of these time-use compositions with cardiometabolic biomarkers.Methods:Accelerometer and cardiometabolic biomarker data from 2 Australian studies involving youths 7-13 years old were pooled(complete cases with accelerometry and adiposity marker data,n=782).A 9-component time-use composition was formed using compositional data analysis:time in shorter and longer bouts of sedentary behavior;time in shorter and longer bouts of light-,moderate-,or vigorous-intensity PA;and"other time"(i.e.,non-wear/sleep).Shorter and longer bouts of sedentary time were defined as<5 min and>5 min,respectively.Shorter bouts of light-,moderate-,and vigorous-intensity PA were defined as<1 min;longer bouts were defined as≥1 min.Regression models examined associations between overall time-use composition and cardiometabolic biomarkers.Then,associations were derived between ratios of longer activity patterns relative to shorter activity patterns,and of each intensity level relative to the other intensity levels and"other time",and cardiometabolic biomarkers.Results:Confounder-adjusted models showed that the overall time-use composition was associated with adiposity,blood pressure,lipids,and the summary score.Specifically,more time in longer bouts of light-intensity PA relative to shorter bouts of light-intensity PA was significantly associated with greater body mass index z-score(zBMI)(β=1.79;SE=0.68)and waist circumference(β=18.35,SE=4.78).When each activity intensity was considered relative to all higher intensities and"other time",more time in light-and vigorous-intensity PA,and less time in sedentary behavior and moderate-intensity PA,were associated with lower waist circumference.Conclusion:Accumulating PA,particularly light-intensity PA,in frequent short bursts may be more beneficial for limiting adiposity compared to accumulating the same amount of PA at these intensities in longer bouts.展开更多
In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main contr...In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.展开更多
基金part of the National Key Fundamental Research Program(No.2005CB422108)the National Natural Science Foundation of China(Grant No.40672092).
文摘By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Planperiod (2007BAD89B03, 2007BAD17B07 and2006BAD05B01)
文摘Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.
文摘Source-contacting gas, which is also called basin-center gas, deep basin gas, is the tight-sand gas accumulation contacting closely to its source rocks. Having different accumulation mechanisms from conventional gas reservoirs that are formed by replacement way, the typical source-contacting gas reservoirs are formed by piston-typed migration forward way. Source-contacting gas accumulations exhibit a series of distinctly mechanic characteristics. According to the valid combination of these characteristics, the estimation for the type of discovered gas reservoirs or distributions of source-contacting gas reservoirs can be forecasted. The source-contacting gas is special for having no edge water or bottom water for gas and complicated gas-water relationships, which emphasizes the intimate association of reservoir rocks with source rocks, which is called the root of the gas reservoir. There are many basins having the mechanic conditions for source-contacting gas accumulations in China, which can be divided into three regions. Most of the basins with favorable accumulation conditions are located mainly in the central and western China. According to the present data, basins having source-contacting gas accumulations in China can be divided into three types, accumulation conditions and configuration relationships are the best in type A basins and they are the larger basins in central China. Type B basins with plain accumulation conditions exist primarily in eastern China and also the basins in western China. Accumulation conditions and exploration futures are worse in type C basins, which refer mainly to the small basins in southern China and China Sea basins. Main source-contacting gas basins in China are thoroughly discussed in this paper and the distribution patterns of source-contacting gas in five huge basins are discussed and forecasted.
文摘Baise basin is a semi-graben type , pan-shaped faulted basin of Early Tertiary , in which carbonate lacustrine deposits and elastic lacustrine deposits developed . The assemblages of Gilbert-type delta-lakes ,littoral ,shallow and deep water fades are recognized . Based on grain size , the clastic lacustrine deposit systems can be grouped in three kinds of depositional sequences of progressive deposition : (1)from coarse to fine , (2)from fine to coarse and (3) from fine to coarse and then to fine agan . This was controlled mainly by hydrodynamic factor of lake bottom type .Lake shore was an important place for coal accumulation and peatmoor development . It had long time for coal accumulation and there was a very little amount of minerals into the basin ,and the thick coal layer and high quality coal developed m the zone where initial lake bottom was plan-like and the surface stream flow was weak .Peat accumulation advanced from the margin to the center of basin .Carbonate lakes contained much water ,very high preponderant contenis of coagel ,low inert contents and no fusinite in the coal .
文摘Purpose:The study aimed to describe youth time-use compositions,focusing on time spent in shorter and longer bouts of sedentary behavior and physical activity(PA),and to examine associations of these time-use compositions with cardiometabolic biomarkers.Methods:Accelerometer and cardiometabolic biomarker data from 2 Australian studies involving youths 7-13 years old were pooled(complete cases with accelerometry and adiposity marker data,n=782).A 9-component time-use composition was formed using compositional data analysis:time in shorter and longer bouts of sedentary behavior;time in shorter and longer bouts of light-,moderate-,or vigorous-intensity PA;and"other time"(i.e.,non-wear/sleep).Shorter and longer bouts of sedentary time were defined as<5 min and>5 min,respectively.Shorter bouts of light-,moderate-,and vigorous-intensity PA were defined as<1 min;longer bouts were defined as≥1 min.Regression models examined associations between overall time-use composition and cardiometabolic biomarkers.Then,associations were derived between ratios of longer activity patterns relative to shorter activity patterns,and of each intensity level relative to the other intensity levels and"other time",and cardiometabolic biomarkers.Results:Confounder-adjusted models showed that the overall time-use composition was associated with adiposity,blood pressure,lipids,and the summary score.Specifically,more time in longer bouts of light-intensity PA relative to shorter bouts of light-intensity PA was significantly associated with greater body mass index z-score(zBMI)(β=1.79;SE=0.68)and waist circumference(β=18.35,SE=4.78).When each activity intensity was considered relative to all higher intensities and"other time",more time in light-and vigorous-intensity PA,and less time in sedentary behavior and moderate-intensity PA,were associated with lower waist circumference.Conclusion:Accumulating PA,particularly light-intensity PA,in frequent short bursts may be more beneficial for limiting adiposity compared to accumulating the same amount of PA at these intensities in longer bouts.
文摘In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.