Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple faul...Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple fault plane)in shallow layers,binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall)in middle,layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall)in deep layers.Because the induced fracture zone is a high porosity and permeability zone,and the sliding fracture zone is a low porosity and ultra-low permeability zone,the late fault in middle layers has the character of"transporting while sealing".The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall.In deep layers,the late fault has the character of"dual-transportation",induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon.The early fault that only developed in the deep layers is presumed to be unitary structure,which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period.Controlled by hydrocarbon source,early/late faults,sand bodies and traps,two reservoir-forming models of"inverted L"and"stereo-spiral"can be proposed in middle layers,while two reservoir-forming models of"cross fault"and"lateral fault sealing"are developed in the deep layers of Zhu I Depression.展开更多
基金The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No.2016ZX05024-002
文摘Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple fault plane)in shallow layers,binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall)in middle,layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall)in deep layers.Because the induced fracture zone is a high porosity and permeability zone,and the sliding fracture zone is a low porosity and ultra-low permeability zone,the late fault in middle layers has the character of"transporting while sealing".The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall.In deep layers,the late fault has the character of"dual-transportation",induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon.The early fault that only developed in the deep layers is presumed to be unitary structure,which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period.Controlled by hydrocarbon source,early/late faults,sand bodies and traps,two reservoir-forming models of"inverted L"and"stereo-spiral"can be proposed in middle layers,while two reservoir-forming models of"cross fault"and"lateral fault sealing"are developed in the deep layers of Zhu I Depression.