AIM:To assess the accuracy of polyp size using an endoscopic lesion measurement system(ELMS).METHODS:The accuracy of polyp size assessment was compared among measurements acquired by visual estimation,disposable gradu...AIM:To assess the accuracy of polyp size using an endoscopic lesion measurement system(ELMS).METHODS:The accuracy of polyp size assessment was compared among measurements acquired by visual estimation,disposable graduated biopsy forceps(DGBF;used as a"scale-plate")and the ELMS.RESULTS:There were 192 polyps from 166 cases included in this study.The mean diameter of the post polypectomy measurement was 0.85±0.53 cm(range:0.2-3.0 cm).The mean diameter by visual estimation was 1.10±0.53 cm,which was significantly different compared to the actual size of the polyp(P<0.001).The mean diameters obtained using DGBF(0.87±0.54cm)and ELMS(0.85±0.53 cm)did not significantly differ from the actual size of the polyp.The difference between the measurements from the ELMS and DGBF was not significant.CONCLUSION:Unlike visual estimations at colonoscopy,endoscopic graduated biopsy forceps and the endoscopic lesion measurement system are accurate methods to estimate polyp size.展开更多
For the nonlinearity of Fabry-Perot interferometer(FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering sign...For the nonlinearity of Fabry-Perot interferometer(FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering signal Doppler shift.A method of repeating the use of the approximate linear part of FPI transmission spectra for reducing the high uncertainty of a big Doppler shift is proposed.One of the ways of realizing this method is discussed in detail,in which the characteristics of FPI transmission spectrum changing with thickness and incident angle are utilized simultaneously.Under different atmosphere conditions,it has been proved theoretically that the range of measurement uncertainty drops to one-sixth while its minimum has no serious change.This method can be used not only to guide the new system design,but also as a new working way for the fabricated system.展开更多
We review and compare two definitions of rough set approximations.One is defined by a pair of sets in the universe and the other by a pair of sets in the quotient universe.The latter definition,although less studied,i...We review and compare two definitions of rough set approximations.One is defined by a pair of sets in the universe and the other by a pair of sets in the quotient universe.The latter definition,although less studied,is semantically superior for interpreting rule induction and is closely related to granularity switching in granular computing.Numerical measures about the accuracy and quality of approximations are examined.Several semantics difficulties are commented.展开更多
The paper, after the introduction, briefly outlines the principles of both absolute and relative GPS positioning. It deals with factors and error resources affecting the accuracy of these surveying procedures. It revi...The paper, after the introduction, briefly outlines the principles of both absolute and relative GPS positioning. It deals with factors and error resources affecting the accuracy of these surveying procedures. It reviews the geodetic determination of a reference point and a base line used for the test measurements. The study describes the completed test measurements, and on the basis of results, it draws the conclusions for the accuracy of the investigated surveying methods. Finally, considering these accuracy measures, their possible application in mine surveying is also mentioned very shortly.展开更多
In Fourier transform profilometry (FTP), we must restrain spectrum overlapping caused by the nonlinearity of the charge coupled device (CCD) and increase the measurement accuracy of the object shape. Firstly, the ...In Fourier transform profilometry (FTP), we must restrain spectrum overlapping caused by the nonlinearity of the charge coupled device (CCD) and increase the measurement accuracy of the object shape. Firstly, the causes of producing higher-order spectrum components and inducing spectrum overlapping are analysed theoretically, and a simple physical ex- planation and analytical deduction are given. Secondly, aiming to suppress spectrum overlapping and improve measurement accuracy, the influence of spatial carrier frequency of projection grating on them is analysed. A method of increasing the spatial carrier frequency of projection grating to restrain or reduce the spectrum overlapping significantly is proposed. We then analyze the mechanism of how the spectrum overlapping is reduced. Finally, the simulation results and experimental measurements verify the correction of the proposed theory and method.展开更多
The objective of traffic accident reconstruction is to recreate the event, which is necessary for analyzing the collision dynamics that is used as evidence in court cases. Traffic accident reconstruction and a demonst...The objective of traffic accident reconstruction is to recreate the event, which is necessary for analyzing the collision dynamics that is used as evidence in court cases. Traffic accident reconstruction and a demonstration of the event require precise data pertaining to scene measurement. However, there are differences between the individual measuring tools and methods related to traffic accident investigation, just as there are differences between the extent of their use and measurement accuracy. The most commonly applied method is the measuring tape, followed by measurements with total stations and laser rangefinders, while photogrammetry is also becoming increasingly important. The advantages and disadvantages of individual tools and methods affect the required number of investigators, portability, measurement range, applicability depending on the amount of light and weather conditions, on the possibility of remote measurement, on data collection time, on the scope, on the option to later process, the collected data and above all on the accuracy of all gathered data. The latter is crucial for proving the guilt or innocence of traffic accident participants at court, as inaccurate data can lead to an unjust sentence. Measurement accuracy using the above mentioned tools and methods also varies depending on which ones are used, as well as on other factors.展开更多
The main reasons for the occurrence of temperature error and perspective directions of decreasing of its value are presented by improving the device design based on the phenomenon of surface plasmon resonance (SPR) an...The main reasons for the occurrence of temperature error and perspective directions of decreasing of its value are presented by improving the device design based on the phenomenon of surface plasmon resonance (SPR) and numerical methods of processing the results of measurements by this device. The most essential influence on changes in results of measurements can be rendered by temperature changes in the analyte refractive index. It is shown that the application of the integrated temperature stabilization of the device with the test substance, and numerical processing of the measurement results for compensation of temperature changes of the test substance and the use of film heaters it is possible to reduce the measurement error of the refractive index of the analyte at least 30 times from 2.4 × 10-4 to 7.6 × 10-6.展开更多
The aim of this study was to investigate the reliability and validity of the New Shooting Accuracy Measurement Software (SAMS). Thirty two male collegian soccer players performed three inner side kicking to the tran...The aim of this study was to investigate the reliability and validity of the New Shooting Accuracy Measurement Software (SAMS). Thirty two male collegian soccer players performed three inner side kicking to the transparent goal construction. A High speed camera was placed at the back of the construction to determine where the ball contacted. Recorded video results were assessed with the SAMS and Kinovea software. To investigate test-retest reliability, three kicking results were examined twice by SAMS. Moreover kicking accuracy results obtained with SAMS were compared with results provided by Kinovea in order to investigate validity. Test-retest reproducibility of the new software was excellent, with Concordance Correlation Coefficient for distance to target (0.99, 0.99 and 0.99 respectively) and for angular degree of the ball (0.97, 0.99 and 0.99 respectively), low Coefficients of Variation (between 2.10 to 6.33 for distance to target and 2.40 to 2.69 for angular degree) and random error (between _.+ 0.55 to __+ 3.44 for distance to target and ___ 0.63 to ___ 2.75 for angular degree). Constant error (between 0.44 to 1.28 for distance to target and -1.16 to __. -2.51 for angular degree) and proportional error (between 0.97 to 0.98 for distance to target and 1.00 to 1.01 for angular degree) were very low for validity. In conclusion, the SAMS represents a valid and reliable instrument to measure accuracy of shooting to target.展开更多
The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, C...The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, COP (center of pressure) movement on sitting surface and tracking error in driving simulator task. Drowsy states were predicted by means of the multinomial logistic regression model where behavioral measures and subjective evaluation of drowsiness corresponded to independent variables and a dependent variable, respectively. First, we compared the effectiveness of two methods (correlation coefficient-based method and odds ratio-based method) for determining the order of entering behavioral measures into the prediction model. It was found that the prediction accuracy did not differ between both methods. Second, the prediction accuracy was compared among the numbers of behavioral measures. The prediction accuracy did not differ among four, five and six behavioral measures and it was concluded that entering at least four behavioral measures into the prediction model is enough to achieve higher prediction accuracy. Third, the prediction accuracy was compared between the strongly drowsy and the weakly drowsy groups. The prediction accuracy differed between the two groups and the proposed method was effective under the condition where drowsiness was induced to a larger extent.展开更多
For series manufacture of pressure sensors, stage of technological tests is performed, related to a definition of the manufacturing accuracy of the sensors. Technological test plan of pressure sensors involves testing...For series manufacture of pressure sensors, stage of technological tests is performed, related to a definition of the manufacturing accuracy of the sensors. Technological test plan of pressure sensors involves testing the sensors on certain fixed temperature and pressure points available in the table. According to a test results, we determine transformation function mathematical model coefficients of sensors and accordance by the claimed accuracy class, of the manufactured sensors. The cost of pressure sensors mostly depends on the cost of this step and determined by the complexity of the used transformation function model. The analysis of a contemporary works associated with the choice of transformation functions for smart pressure sensors. A new proposed indicator of model complexity of a sensor transformation function. In details shown features of the complexity indicator use and given an example. In the article was set and resolved the task to reduce the cost of the tests for commercially available sensors, by reducing the number of temperature points, without compromising the accuracy of the sensor measurement ability.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rota...This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.展开更多
BACKGROUND To avoid acute variceal bleeding in cirrhosis,current guidelines recommend screening for high-risk esophageal varices(EVs)by determining variceal size and identifying red wale markings.However,visual measur...BACKGROUND To avoid acute variceal bleeding in cirrhosis,current guidelines recommend screening for high-risk esophageal varices(EVs)by determining variceal size and identifying red wale markings.However,visual measurements of EV during routine endoscopy are often inaccurate.AIM To determine whether biopsy forceps(BF)could be used as a reference to improve the accuracy of binary classification of variceal size.METHODS An in vitro self-made EV model with sizes ranging from 2 to 12 mm in diameter was constructed.An online image-based survey comprising 11 endoscopic images of simulated EV without BF and 11 endoscopic images of EV with BF was assembled and sent to 84 endoscopists.The endoscopists were blinded to the actual EV size and evaluated the 22 images in random order.RESULTS The respondents included 48 academic and four private endoscopists.The accuracy of EV size estimation was low in both the visual(13.81%)and BF-based(20.28%)groups.The use of open forceps improved the ability of the endoscopists to correctly classify the varices by size(small≤5 mm,large>5 mm)from 71.85%to 82.17%(P<0.001).CONCLUSION BF may improve the accuracy of EV size assessment,and its use in clinical practice should be investigated.展开更多
The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable...The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.展开更多
The magnetic properties of the claw pole have a direct effect on the output power of a generator Many methods can be used to measure these magnetic properties,each with its own advantages,but an important shortcoming ...The magnetic properties of the claw pole have a direct effect on the output power of a generator Many methods can be used to measure these magnetic properties,each with its own advantages,but an important shortcoming is that all are destructive.In this study,a new non-destructive method to measure the magnetic properties of claw pole was proposed and a corresponding testing set-up was designed.A finite-element model was constructed to simulate the measurement process.Results proved that the measured magnetization-like curves had good agreement with the trend of the input magnetic curves and the effect of the positioning error in the measuring process could be neglected.To further validate the new method,seven types of claw poles of different materials subjected to different heat-treatment processes were forged and tested by both the new method and the conventional ring-sample method.Compared with the latter,the new method showed better consistency,relatively higher accuracy,and much stronger stability of measurement results;however,its sensitivity needs to be improved.The effects of material compositions and heat-treatment parameters on the magnetic properties of the claw pole were briefly analyzed.展开更多
Error sources which decrease the accuracy of GPS in absolute velocity determination have been changed since SA was turned off. Firstly, quantities of all kinds of error sources that influence velocity deter-mination a...Error sources which decrease the accuracy of GPS in absolute velocity determination have been changed since SA was turned off. Firstly, quantities of all kinds of error sources that influence velocity deter-mination are analyzed. The potential accuracy of GPS absolute velocity determination is derived from both theory and field GPS data simulation. After that, two tests were carried out to evaluate the performance of GPS absolute velocity determination in the case of a static and an airborne GPS receiver and INS (Inertial Navigation System) instrument in kinematic mode. In static mode, the receiver velocity has been estimated to be several mm/s with the carrier-phase derived Doppler measurements, and several cm/s with the receiver generated Doppler measurements. In kinematic mode, GPS absolute velocity estimates are compared with the synchronized measurements from the high accuracy INS. The root mean square statistics of the velocity discrepancies between GPS and INS come up to dm/s. Moreover, it has a strong correlation with the accel-eration or jerk of the aircraft.展开更多
Light field imaging technology can obtain three-dimensional(3D)information of a test surface in a single exposure.Traditional light field reconstruction algorithms not only take a long time to trace back to the origin...Light field imaging technology can obtain three-dimensional(3D)information of a test surface in a single exposure.Traditional light field reconstruction algorithms not only take a long time to trace back to the original image,but also require the exact parameters of the light field system,such as the position and posture of a microlens array(MLA),which will cause errors in the reconstructed image if these parameters cannot be precisely obtained.This paper proposes a reconstruction algorithm for light field imaging based on the point spread function(PSF),which does not require prior knowledge of the system.The accurate PSF derivation process of a light field system is presented,and modeling and simulation were conducted to obtain the relationship between the spatial distribution characteristics and the PSF of the light field system.A morphology-based method is proposed to analyze the overlapping area of the subimages of light field images to identify the accurate spatial location of the MLA used in the system,which is thereafter used to accurately refocus light field imaging.A light field system is built to verify the algorithm’s effectiveness.Experimental results show that the measurement accuracy is increased over 41.0%compared with the traditional method by measuring a step standard.The accuracy of parameters is also improved through a microstructure measurement with a peak-to-valley value of 25.4%and root mean square value of 23.5%improvement.This further validates that the algorithm can effectively improve the refocusing efficiency and the accuracy of the light field imaging results with the superiority of refocusing light field imaging without prior knowledge of the system.The proposed method provides a new solution for fast and accurate 3D measurement based on a light field.展开更多
Radar cross section (RCS) of non-sphericai raindrops is calculated by using the software CST based on finite integral method and compared with RCS of spherical raindrops. The revised factor of non-spherical raindrop...Radar cross section (RCS) of non-sphericai raindrops is calculated by using the software CST based on finite integral method and compared with RCS of spherical raindrops. The revised factor of non-spherical raindrops is obtained. The radar reflectivity with precipitation change of four distribution models of M-P, Gamma, JD and JT combining the revised factor is gotten using trapezoidal integration. When the infuence of non-spherical raindrops is considered, the accuracy of precipitation measurement of four distribution models can be separately improved 8.77%, 8.47%, 10.53% and 8.04% in the case of rain intensity is 100 mm/h.展开更多
In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the...In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.展开更多
A new method of phase measurement based on optimization is presented. Simulations were ran with synthesized signals, and comparison was made with some spectral domain methods. The results show that, with a suitable n...A new method of phase measurement based on optimization is presented. Simulations were ran with synthesized signals, and comparison was made with some spectral domain methods. The results show that, with a suitable number of samples processed, this method is superior to other methods in terms of accuracy, while the amplitude and phase of distortion component have no effect on accuracy.展开更多
基金Supported by National Nature Science Foundation of China,No.30973837,No.81273944the Nanjing Medical Technology Development Project,No.NJYX201203
文摘AIM:To assess the accuracy of polyp size using an endoscopic lesion measurement system(ELMS).METHODS:The accuracy of polyp size assessment was compared among measurements acquired by visual estimation,disposable graduated biopsy forceps(DGBF;used as a"scale-plate")and the ELMS.RESULTS:There were 192 polyps from 166 cases included in this study.The mean diameter of the post polypectomy measurement was 0.85±0.53 cm(range:0.2-3.0 cm).The mean diameter by visual estimation was 1.10±0.53 cm,which was significantly different compared to the actual size of the polyp(P<0.001).The mean diameters obtained using DGBF(0.87±0.54cm)and ELMS(0.85±0.53 cm)did not significantly differ from the actual size of the polyp.The difference between the measurements from the ELMS and DGBF was not significant.CONCLUSION:Unlike visual estimations at colonoscopy,endoscopic graduated biopsy forceps and the endoscopic lesion measurement system are accurate methods to estimate polyp size.
基金Project supported by the International Cooperative Project between China and Russia,Research on the Ocean/Atmosphere Lidar (Grant No. 2008DFR10170)
文摘For the nonlinearity of Fabry-Perot interferometer(FPI) transmission spectrum,the measurement uncertainty of incoherent Mie Doppler wind lidar based on it increases evidently with the increase of backscattering signal Doppler shift.A method of repeating the use of the approximate linear part of FPI transmission spectra for reducing the high uncertainty of a big Doppler shift is proposed.One of the ways of realizing this method is discussed in detail,in which the characteristics of FPI transmission spectrum changing with thickness and incident angle are utilized simultaneously.Under different atmosphere conditions,it has been proved theoretically that the range of measurement uncertainty drops to one-sixth while its minimum has no serious change.This method can be used not only to guide the new system design,but also as a new working way for the fabricated system.
文摘We review and compare two definitions of rough set approximations.One is defined by a pair of sets in the universe and the other by a pair of sets in the quotient universe.The latter definition,although less studied,is semantically superior for interpreting rule induction and is closely related to granularity switching in granular computing.Numerical measures about the accuracy and quality of approximations are examined.Several semantics difficulties are commented.
文摘The paper, after the introduction, briefly outlines the principles of both absolute and relative GPS positioning. It deals with factors and error resources affecting the accuracy of these surveying procedures. It reviews the geodetic determination of a reference point and a base line used for the test measurements. The study describes the completed test measurements, and on the basis of results, it draws the conclusions for the accuracy of the investigated surveying methods. Finally, considering these accuracy measures, their possible application in mine surveying is also mentioned very shortly.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173122, 60970098, 60803024, 90715043, and 61144006)the Postdoctoral Startup Foundation of Central South University, China (Grant No. 1332/74341016030)
文摘In Fourier transform profilometry (FTP), we must restrain spectrum overlapping caused by the nonlinearity of the charge coupled device (CCD) and increase the measurement accuracy of the object shape. Firstly, the causes of producing higher-order spectrum components and inducing spectrum overlapping are analysed theoretically, and a simple physical ex- planation and analytical deduction are given. Secondly, aiming to suppress spectrum overlapping and improve measurement accuracy, the influence of spatial carrier frequency of projection grating on them is analysed. A method of increasing the spatial carrier frequency of projection grating to restrain or reduce the spectrum overlapping significantly is proposed. We then analyze the mechanism of how the spectrum overlapping is reduced. Finally, the simulation results and experimental measurements verify the correction of the proposed theory and method.
文摘The objective of traffic accident reconstruction is to recreate the event, which is necessary for analyzing the collision dynamics that is used as evidence in court cases. Traffic accident reconstruction and a demonstration of the event require precise data pertaining to scene measurement. However, there are differences between the individual measuring tools and methods related to traffic accident investigation, just as there are differences between the extent of their use and measurement accuracy. The most commonly applied method is the measuring tape, followed by measurements with total stations and laser rangefinders, while photogrammetry is also becoming increasingly important. The advantages and disadvantages of individual tools and methods affect the required number of investigators, portability, measurement range, applicability depending on the amount of light and weather conditions, on the possibility of remote measurement, on data collection time, on the scope, on the option to later process, the collected data and above all on the accuracy of all gathered data. The latter is crucial for proving the guilt or innocence of traffic accident participants at court, as inaccurate data can lead to an unjust sentence. Measurement accuracy using the above mentioned tools and methods also varies depending on which ones are used, as well as on other factors.
文摘The main reasons for the occurrence of temperature error and perspective directions of decreasing of its value are presented by improving the device design based on the phenomenon of surface plasmon resonance (SPR) and numerical methods of processing the results of measurements by this device. The most essential influence on changes in results of measurements can be rendered by temperature changes in the analyte refractive index. It is shown that the application of the integrated temperature stabilization of the device with the test substance, and numerical processing of the measurement results for compensation of temperature changes of the test substance and the use of film heaters it is possible to reduce the measurement error of the refractive index of the analyte at least 30 times from 2.4 × 10-4 to 7.6 × 10-6.
文摘The aim of this study was to investigate the reliability and validity of the New Shooting Accuracy Measurement Software (SAMS). Thirty two male collegian soccer players performed three inner side kicking to the transparent goal construction. A High speed camera was placed at the back of the construction to determine where the ball contacted. Recorded video results were assessed with the SAMS and Kinovea software. To investigate test-retest reliability, three kicking results were examined twice by SAMS. Moreover kicking accuracy results obtained with SAMS were compared with results provided by Kinovea in order to investigate validity. Test-retest reproducibility of the new software was excellent, with Concordance Correlation Coefficient for distance to target (0.99, 0.99 and 0.99 respectively) and for angular degree of the ball (0.97, 0.99 and 0.99 respectively), low Coefficients of Variation (between 2.10 to 6.33 for distance to target and 2.40 to 2.69 for angular degree) and random error (between _.+ 0.55 to __+ 3.44 for distance to target and ___ 0.63 to ___ 2.75 for angular degree). Constant error (between 0.44 to 1.28 for distance to target and -1.16 to __. -2.51 for angular degree) and proportional error (between 0.97 to 0.98 for distance to target and 1.00 to 1.01 for angular degree) were very low for validity. In conclusion, the SAMS represents a valid and reliable instrument to measure accuracy of shooting to target.
文摘The aim of this study was to explore the effectiveness of behavioral evaluation measures for predicting drivers' subjective drowsiness. Behavioral measures included neck bending angle, back pressure, foot pressure, COP (center of pressure) movement on sitting surface and tracking error in driving simulator task. Drowsy states were predicted by means of the multinomial logistic regression model where behavioral measures and subjective evaluation of drowsiness corresponded to independent variables and a dependent variable, respectively. First, we compared the effectiveness of two methods (correlation coefficient-based method and odds ratio-based method) for determining the order of entering behavioral measures into the prediction model. It was found that the prediction accuracy did not differ between both methods. Second, the prediction accuracy was compared among the numbers of behavioral measures. The prediction accuracy did not differ among four, five and six behavioral measures and it was concluded that entering at least four behavioral measures into the prediction model is enough to achieve higher prediction accuracy. Third, the prediction accuracy was compared between the strongly drowsy and the weakly drowsy groups. The prediction accuracy differed between the two groups and the proposed method was effective under the condition where drowsiness was induced to a larger extent.
文摘For series manufacture of pressure sensors, stage of technological tests is performed, related to a definition of the manufacturing accuracy of the sensors. Technological test plan of pressure sensors involves testing the sensors on certain fixed temperature and pressure points available in the table. According to a test results, we determine transformation function mathematical model coefficients of sensors and accordance by the claimed accuracy class, of the manufactured sensors. The cost of pressure sensors mostly depends on the cost of this step and determined by the complexity of the used transformation function model. The analysis of a contemporary works associated with the choice of transformation functions for smart pressure sensors. A new proposed indicator of model complexity of a sensor transformation function. In details shown features of the complexity indicator use and given an example. In the article was set and resolved the task to reduce the cost of the tests for commercially available sensors, by reducing the number of temperature points, without compromising the accuracy of the sensor measurement ability.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
文摘This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.
文摘BACKGROUND To avoid acute variceal bleeding in cirrhosis,current guidelines recommend screening for high-risk esophageal varices(EVs)by determining variceal size and identifying red wale markings.However,visual measurements of EV during routine endoscopy are often inaccurate.AIM To determine whether biopsy forceps(BF)could be used as a reference to improve the accuracy of binary classification of variceal size.METHODS An in vitro self-made EV model with sizes ranging from 2 to 12 mm in diameter was constructed.An online image-based survey comprising 11 endoscopic images of simulated EV without BF and 11 endoscopic images of EV with BF was assembled and sent to 84 endoscopists.The endoscopists were blinded to the actual EV size and evaluated the 22 images in random order.RESULTS The respondents included 48 academic and four private endoscopists.The accuracy of EV size estimation was low in both the visual(13.81%)and BF-based(20.28%)groups.The use of open forceps improved the ability of the endoscopists to correctly classify the varices by size(small≤5 mm,large>5 mm)from 71.85%to 82.17%(P<0.001).CONCLUSION BF may improve the accuracy of EV size assessment,and its use in clinical practice should be investigated.
基金Supported by National Natural Science Foundation of China(Grant No.51265017)Jiangxi Provincial Science and Technology Planning Project,China(Grant No.GJJ12468)Science and Technology Planning Project of Ji’an City,China(Grant No.20131828)
文摘The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.
基金Partially supported by National Natural Science Foundation of China(Grant No.51875348)
文摘The magnetic properties of the claw pole have a direct effect on the output power of a generator Many methods can be used to measure these magnetic properties,each with its own advantages,but an important shortcoming is that all are destructive.In this study,a new non-destructive method to measure the magnetic properties of claw pole was proposed and a corresponding testing set-up was designed.A finite-element model was constructed to simulate the measurement process.Results proved that the measured magnetization-like curves had good agreement with the trend of the input magnetic curves and the effect of the positioning error in the measuring process could be neglected.To further validate the new method,seven types of claw poles of different materials subjected to different heat-treatment processes were forged and tested by both the new method and the conventional ring-sample method.Compared with the latter,the new method showed better consistency,relatively higher accuracy,and much stronger stability of measurement results;however,its sensitivity needs to be improved.The effects of material compositions and heat-treatment parameters on the magnetic properties of the claw pole were briefly analyzed.
基金the National 863 Program of China (No. 2006AA12Z325)
文摘Error sources which decrease the accuracy of GPS in absolute velocity determination have been changed since SA was turned off. Firstly, quantities of all kinds of error sources that influence velocity deter-mination are analyzed. The potential accuracy of GPS absolute velocity determination is derived from both theory and field GPS data simulation. After that, two tests were carried out to evaluate the performance of GPS absolute velocity determination in the case of a static and an airborne GPS receiver and INS (Inertial Navigation System) instrument in kinematic mode. In static mode, the receiver velocity has been estimated to be several mm/s with the carrier-phase derived Doppler measurements, and several cm/s with the receiver generated Doppler measurements. In kinematic mode, GPS absolute velocity estimates are compared with the synchronized measurements from the high accuracy INS. The root mean square statistics of the velocity discrepancies between GPS and INS come up to dm/s. Moreover, it has a strong correlation with the accel-eration or jerk of the aircraft.
基金This work was partially supported by the National Key R&D Program of China(No.2017YFA0701200)the National Nat-ural Science Foundation of China(Grant No.52075100)Shanghai Science and Technology Committee Innovation Grant(19ZR1404600).
文摘Light field imaging technology can obtain three-dimensional(3D)information of a test surface in a single exposure.Traditional light field reconstruction algorithms not only take a long time to trace back to the original image,but also require the exact parameters of the light field system,such as the position and posture of a microlens array(MLA),which will cause errors in the reconstructed image if these parameters cannot be precisely obtained.This paper proposes a reconstruction algorithm for light field imaging based on the point spread function(PSF),which does not require prior knowledge of the system.The accurate PSF derivation process of a light field system is presented,and modeling and simulation were conducted to obtain the relationship between the spatial distribution characteristics and the PSF of the light field system.A morphology-based method is proposed to analyze the overlapping area of the subimages of light field images to identify the accurate spatial location of the MLA used in the system,which is thereafter used to accurately refocus light field imaging.A light field system is built to verify the algorithm’s effectiveness.Experimental results show that the measurement accuracy is increased over 41.0%compared with the traditional method by measuring a step standard.The accuracy of parameters is also improved through a microstructure measurement with a peak-to-valley value of 25.4%and root mean square value of 23.5%improvement.This further validates that the algorithm can effectively improve the refocusing efficiency and the accuracy of the light field imaging results with the superiority of refocusing light field imaging without prior knowledge of the system.The proposed method provides a new solution for fast and accurate 3D measurement based on a light field.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the National Natural Science Foundation of China (Grant No.61071185)+1 种基金the Key Technology Research and Development Program of Science and Technology Commission of Shanghai Municipality (Grant No.10511501702)the Science and Technology Commission of Shanghai Municipality (Grant Nos.08590700500, 08DZ2231100)
文摘Radar cross section (RCS) of non-sphericai raindrops is calculated by using the software CST based on finite integral method and compared with RCS of spherical raindrops. The revised factor of non-spherical raindrops is obtained. The radar reflectivity with precipitation change of four distribution models of M-P, Gamma, JD and JT combining the revised factor is gotten using trapezoidal integration. When the infuence of non-spherical raindrops is considered, the accuracy of precipitation measurement of four distribution models can be separately improved 8.77%, 8.47%, 10.53% and 8.04% in the case of rain intensity is 100 mm/h.
基金the Basal Research Funds of National Defence Science and Technology
文摘In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.
文摘A new method of phase measurement based on optimization is presented. Simulations were ran with synthesized signals, and comparison was made with some spectral domain methods. The results show that, with a suitable number of samples processed, this method is superior to other methods in terms of accuracy, while the amplitude and phase of distortion component have no effect on accuracy.