The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxid...Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.展开更多
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machin...Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.展开更多
We investigate theoretically the ionization properties of the valence electron for the alkali metal atom Na in an intense pulsed laser field by solving numerically the time-dependent Schrodinger equation with an accur...We investigate theoretically the ionization properties of the valence electron for the alkali metal atom Na in an intense pulsed laser field by solving numerically the time-dependent Schrodinger equation with an accurate l-dependent model potential.By calculating the variations of the ionization probabilities with laser peak intensity for wavelengths ranging from 200 nm to 600 nm,our results present a dynamic stabilization trend for the Na atom initially in its ground state(3 s) and the excited states(3 p and 4 s) exposed to an intense pulsed laser field.Especially a clear "window" of dynamic stabilization at lower laser intensities and longer wavelengths for the initial state 4 s(the second excited state) is found.By analyzing the time-dependent population distributions of the valence electron in the bound states with the different values of principal quantum number n and orbital quantum number l,we can attribute the dynamic stabilization to the periodic population in the low-excited states since the valence electron oscillates rapidly between the lowly excited states and the continuum states.展开更多
Security-constrained unit commitment(SCUC)has been extensively studied as a key decision-making tool to determine optimal power generation schedules in the operation of electricity market.With the development of emerg...Security-constrained unit commitment(SCUC)has been extensively studied as a key decision-making tool to determine optimal power generation schedules in the operation of electricity market.With the development of emerging power grids,fruitful research results on SCUC have been obtained.Therefore,it is essential to review current work and propose future directions for SCUC to meet the needs of developing power systems.In this paper,the basic mathematical model of the standard SCUC is summarized,and the characteristics and application scopes of common solution algorithms are presented.Customized models focusing on diverse mathematical properties are then categorized and the corresponding solving methodologies are discussed.Finally,research trends in the field are prospected based on a summary of the state-of-the-art and latest studies.It is hoped that this paper can be a useful reference to support theoretical research and practical applications of SCUC in the future.展开更多
Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a clas...Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e., the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences between the dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. A simulation example is given to illustrate the effectiveness of the proposed scheme.展开更多
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金supported by Guangzhou Science and Technology Planning Project(2023A04J0131)Special fund for scientific innovation strategyconstruction of high level Academy of Agriculture Science(R2020PY-JG009,R2022PY-QY007,202106TD)+2 种基金China Agriculture Research System-CARS-35the Project of Swine Innovation Team in Guangdong Modern Agricultural Research System(2022KJ126)Special Fund for Rural Revitalization Strategy of Guangdong(2023TS-3),China。
文摘Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China Grant No.51877139。
文摘Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465016,11664035,and 11764038)
文摘We investigate theoretically the ionization properties of the valence electron for the alkali metal atom Na in an intense pulsed laser field by solving numerically the time-dependent Schrodinger equation with an accurate l-dependent model potential.By calculating the variations of the ionization probabilities with laser peak intensity for wavelengths ranging from 200 nm to 600 nm,our results present a dynamic stabilization trend for the Na atom initially in its ground state(3 s) and the excited states(3 p and 4 s) exposed to an intense pulsed laser field.Especially a clear "window" of dynamic stabilization at lower laser intensities and longer wavelengths for the initial state 4 s(the second excited state) is found.By analyzing the time-dependent population distributions of the valence electron in the bound states with the different values of principal quantum number n and orbital quantum number l,we can attribute the dynamic stabilization to the periodic population in the low-excited states since the valence electron oscillates rapidly between the lowly excited states and the continuum states.
基金supported in part by the National Natural Science Foundation of China(No.51607104)。
文摘Security-constrained unit commitment(SCUC)has been extensively studied as a key decision-making tool to determine optimal power generation schedules in the operation of electricity market.With the development of emerging power grids,fruitful research results on SCUC have been obtained.Therefore,it is essential to review current work and propose future directions for SCUC to meet the needs of developing power systems.In this paper,the basic mathematical model of the standard SCUC is summarized,and the characteristics and application scopes of common solution algorithms are presented.Customized models focusing on diverse mathematical properties are then categorized and the corresponding solving methodologies are discussed.Finally,research trends in the field are prospected based on a summary of the state-of-the-art and latest studies.It is hoped that this paper can be a useful reference to support theoretical research and practical applications of SCUC in the future.
基金This work was supported by the National Science Fund for Distinguished Young Scholars (No. 61225014), the National Major Scientific Instruments Development Project (No. 61527811), the National Natural Science Foundation of China (Nos. 61304084, 61374119), the Guangdong Natural Science Foundation (No. 2014A030312005), and the Space Intelligent Control Key Laboratory of Science and Technology for National Defense.
文摘Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e., the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences between the dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. A simulation example is given to illustrate the effectiveness of the proposed scheme.