To investigate the oxidation of acenaphthene (Ace), a polycyclic aromatic hydrocarbon (PAH) with a saturated C-C bond by ozone and to characterize the intermediate products of ozonation. Methods Ozone was generate...To investigate the oxidation of acenaphthene (Ace), a polycyclic aromatic hydrocarbon (PAH) with a saturated C-C bond by ozone and to characterize the intermediate products of ozonation. Methods Ozone was generated from filtered dry oxygen by an ozone generator and continually bubbled into a reactor containing lg/L Ace dissolved in an acetonitrile/water solvent mixture (90/10, v/v) at a rate of 0.5 mg/s. HPLC was used to analyze the Ace concentration. Total organic carbon (TOC) was used to measure the amount of water soluble organic compounds. GC-MS was used to identify the ozonized products. Oxygen uptake rate (OUR) of activated sludge was used to characterize the biodegradability of ozonized products. Results During the ozonation process, Ace was degraded, new organic compounds were produced and these intermediate products were difficult mineralize by ozone, with increasing TOC of soluble organics. The ozonized products were degraded by activated sludge more easily than Ace. Conclusion Ozonation decomposes the Ace and improves its biodegradability. The ozonation combined with biological treatment is probably an efficient and economical way to mineralize acenaphthene in wastewater.展开更多
The reaction of acenaphthene with nitrobenzene was investigated in the presence of AlCl3. The results showed that the reaction proceeded via carboncation-electrophilic substitution reaction and free radical substituti...The reaction of acenaphthene with nitrobenzene was investigated in the presence of AlCl3. The results showed that the reaction proceeded via carboncation-electrophilic substitution reaction and free radical substitution reaction pathway. The products of acenaphthenyl phenylamine and biacenaphthyl could be synthesized by this reaction. The influence of the amount of AlCl3 and the temperature on the components of products were also studied in this reaction.展开更多
基金The project was supported by the National Natural Science Foundation of China (Grant No. 50325824).
文摘To investigate the oxidation of acenaphthene (Ace), a polycyclic aromatic hydrocarbon (PAH) with a saturated C-C bond by ozone and to characterize the intermediate products of ozonation. Methods Ozone was generated from filtered dry oxygen by an ozone generator and continually bubbled into a reactor containing lg/L Ace dissolved in an acetonitrile/water solvent mixture (90/10, v/v) at a rate of 0.5 mg/s. HPLC was used to analyze the Ace concentration. Total organic carbon (TOC) was used to measure the amount of water soluble organic compounds. GC-MS was used to identify the ozonized products. Oxygen uptake rate (OUR) of activated sludge was used to characterize the biodegradability of ozonized products. Results During the ozonation process, Ace was degraded, new organic compounds were produced and these intermediate products were difficult mineralize by ozone, with increasing TOC of soluble organics. The ozonized products were degraded by activated sludge more easily than Ace. Conclusion Ozonation decomposes the Ace and improves its biodegradability. The ozonation combined with biological treatment is probably an efficient and economical way to mineralize acenaphthene in wastewater.
文摘The reaction of acenaphthene with nitrobenzene was investigated in the presence of AlCl3. The results showed that the reaction proceeded via carboncation-electrophilic substitution reaction and free radical substitution reaction pathway. The products of acenaphthenyl phenylamine and biacenaphthyl could be synthesized by this reaction. The influence of the amount of AlCl3 and the temperature on the components of products were also studied in this reaction.