Currently, the analysis of acetone-butanol-ethanol (ABE) broths is performed using both High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) for each sample since GC cannot be used in quantifying ...Currently, the analysis of acetone-butanol-ethanol (ABE) broths is performed using both High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) for each sample since GC cannot be used in quantifying sugars and HPLC methods are not yet efficient enough to detect all components separately. In this study, a novel method was developed to quantify all main components present in ABE model solutions (acetone, butanol, ethanol, butyric acid, acetic acid, glucose and xylose) using only HPLC. Although the HPLC operating conditions were optimized to obtain the best possible resolution in HPLC chromatograms, it was observed that the peaks for butyric acid, acetone and ethanol overlapped. The same trend was observed for glucose and xylose. Using the asymmetric Gaussian fit, a program was written in MATLAB to detect the overlapped peaks, deconvolute them and calculate the area of each separated peak. The concentrations of each component were then calculated using the areas and the calibration curves for each component. Experimental results show that this method works well for the ABE model solutions and can be used to quantify all components in the solution when there are some overlapped peaks in the HPLC chromatograms.展开更多
采用PDMS膜生物反应器和丙酮丁醇梭菌(Clostridium acetobutylicum,CICC8012),通过发酵反应与产物渗透汽化原位分离的耦合,实现了丙酮、丁醇和乙醇混合物(ABE)的连续发酵生产。进行了2轮操作持续时间分别为274 h和300 h的发酵实验,分别...采用PDMS膜生物反应器和丙酮丁醇梭菌(Clostridium acetobutylicum,CICC8012),通过发酵反应与产物渗透汽化原位分离的耦合,实现了丙酮、丁醇和乙醇混合物(ABE)的连续发酵生产。进行了2轮操作持续时间分别为274 h和300 h的发酵实验,分别为间断耦合和连续耦合的操作方式。以连续耦合发酵为例,细胞平均干重为1.68 g L 1,丁醇产量为61.43 g L 1,葡萄糖消耗率为1.12 g L 1 h 1,丁醇的体积产率为0.205 g L 1 h 1,比产率为0.122 h 1,转化率为0.183 g g 1。第二轮连续封闭循环发酵的平均葡萄糖消耗率和丁醇产率,都几乎是第一轮的2倍。两轮发酵的细胞生长、产物浓度、葡萄糖消耗和丁醇生成曲线都出现至少2个峰值,表明丙酮丁醇梭菌能适应这种长期发酵模式并且出现再生长。结果表明,PDMS膜生物反应器封闭循环连续发酵生产ABE(特别是丁醇)的操作模式具有可行性和优越性。展开更多
文摘Currently, the analysis of acetone-butanol-ethanol (ABE) broths is performed using both High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) for each sample since GC cannot be used in quantifying sugars and HPLC methods are not yet efficient enough to detect all components separately. In this study, a novel method was developed to quantify all main components present in ABE model solutions (acetone, butanol, ethanol, butyric acid, acetic acid, glucose and xylose) using only HPLC. Although the HPLC operating conditions were optimized to obtain the best possible resolution in HPLC chromatograms, it was observed that the peaks for butyric acid, acetone and ethanol overlapped. The same trend was observed for glucose and xylose. Using the asymmetric Gaussian fit, a program was written in MATLAB to detect the overlapped peaks, deconvolute them and calculate the area of each separated peak. The concentrations of each component were then calculated using the areas and the calibration curves for each component. Experimental results show that this method works well for the ABE model solutions and can be used to quantify all components in the solution when there are some overlapped peaks in the HPLC chromatograms.
文摘采用PDMS膜生物反应器和丙酮丁醇梭菌(Clostridium acetobutylicum,CICC8012),通过发酵反应与产物渗透汽化原位分离的耦合,实现了丙酮、丁醇和乙醇混合物(ABE)的连续发酵生产。进行了2轮操作持续时间分别为274 h和300 h的发酵实验,分别为间断耦合和连续耦合的操作方式。以连续耦合发酵为例,细胞平均干重为1.68 g L 1,丁醇产量为61.43 g L 1,葡萄糖消耗率为1.12 g L 1 h 1,丁醇的体积产率为0.205 g L 1 h 1,比产率为0.122 h 1,转化率为0.183 g g 1。第二轮连续封闭循环发酵的平均葡萄糖消耗率和丁醇产率,都几乎是第一轮的2倍。两轮发酵的细胞生长、产物浓度、葡萄糖消耗和丁醇生成曲线都出现至少2个峰值,表明丙酮丁醇梭菌能适应这种长期发酵模式并且出现再生长。结果表明,PDMS膜生物反应器封闭循环连续发酵生产ABE(特别是丁醇)的操作模式具有可行性和优越性。