Background: No other effects of atropine other than as an antagonist of muscarinic acetylcholine receptor (mAChR) have been found. Methods: In this study, human kidneyepithelial cells were treated with different physi...Background: No other effects of atropine other than as an antagonist of muscarinic acetylcholine receptor (mAChR) have been found. Methods: In this study, human kidneyepithelial cells were treated with different physiological regulators. Results: Subsequently, it was found that atropine could significantly induce autophagy as demonstrated by the appearance of autophagosome-like double- or single-membrane vesicles in the cytoplasm ofhost cells and the number of GFP-LC3 dots. In addition, increased conversion of the autophagy marker protein LC3-I and LC3-II and increased p62/SQSTM1 indicatedincomplete autophagy. In addition, atropine induced autophagosome levels in a dose-dependent manner within a certain concentration range in human kidney epithelial cells. In atropine-treated mouse skeletal muscle cells containing nicotinic acetylcholinereceptors and rat cardiac muscle cells containing mAchR, atropine induced autophagy in mouse skeletal muscle cells but not in rat cardiac muscle cells. Furthermore, atropine did not induce autophagy in tissue cells containing mAchR in vivo but did in tissue cells not containing mAchR. Conclusion: This study expands the application and understanding of atropine’s action mechanism in the field of medicine.展开更多
The cholinergic system plays an important role in the central nervous system of insects and is closely related to the complex behavior of insects. The immunohistochemical technique was performed to detect the expressi...The cholinergic system plays an important role in the central nervous system of insects and is closely related to the complex behavior of insects. The immunohistochemical technique was performed to detect the expression of like-muscarinic acetylcholine receptor M2 in the brain of three castes of Polyrhachis vicina. A positive expression of like-muscarinic acetylcholine receptor M2 was observed in the mushroom body, central body and antennal lobes of the ant brain; but there is great diversity in their location and intensity among worker, queen and male ants. It is speculated that like-muscafinic acetylcholine receptor M2 plays a critical role in the central nervous system, in terms of projecting visual information and olfactory information into the protocerebrum and integrating many inputs.展开更多
The antibodies against acetylcholine receptor AchR and levels of SOD and LPO were measured in 11 patients with myasthenia gravis (MG),and the results were compared with normal controls and patients with diseases other...The antibodies against acetylcholine receptor AchR and levels of SOD and LPO were measured in 11 patients with myasthenia gravis (MG),and the results were compared with normal controls and patients with diseases other than MG.The results showed that the antibodies against AchR were higher as compared with other groups before and after operation. The post-operative level of antibodies was obviously lower than the pre-operative value. An slight increase in SOD and significant decrease in mean value of LPO after surgery were noted. The possible mechanism was discussed.展开更多
BACKGROUND: Our previous research proved that vagus nerve stimulation(VNS) improved the neurological outcome after cardiopulmonary resuscitation(CPR) by activating α7 nicotinic acetylcholine receptor(α7nAChR) in a r...BACKGROUND: Our previous research proved that vagus nerve stimulation(VNS) improved the neurological outcome after cardiopulmonary resuscitation(CPR) by activating α7 nicotinic acetylcholine receptor(α7nAChR) in a rat model, but the underlying mechanism of VNS in neuroprotection after CPR remains unclear.METHODS: In vivo, we established a mouse model of cardiac arrest(CA)/CPR to observe the survival rate, and the changes in inflammatory factors and brain tissue after VNS treatment. In vitro, we examined the effects of α7nAChR agonist on ischemia/reperfusion(I/R)-induced inflammation in BV2 cells under oxygen-glucose deprivation/reoxygenation(OGD/R) conditions. We observed the changes in cell survival rate, the levels of inflammatory factors, and the expressions of α7nAChR/Janus kinase 2(JAK2) and toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB).RESULTS: In vivo, VNS preconditioning enhanced functional recovery, improved the survival rate, and reduced hippocampal CA1 cell damage, and the levels of inflammatory mediators after CA/CPR. The application of α7nAChR agonists provided similar effects against cerebral injury after the return of spontaneous circulation(ROSC), while α7nAChR antagonists reversed these neuroprotective impacts. The in vitro results mostly matched the findings in vivo. OGD/R increased the expression of tumor necrosis factor-alpha(TNF-α), TLR4 and NF-κB p65. When nicotine was added to the OGD/R model, the expression of TLR4, NF-κB p65, and TNF-α decreased, while the phosphorylation of JAK2 increased, which was prevented by preconditioning with α7nAChR or JAK2 antagonists.CONCLUSION: The neuroprotective effect of VNS correlated with the activation of α7nAChR. VNS may alleviate cerebral IR injury by inhibiting TLR4/NF-κB and activating the α7nAChR/JAK2 signaling pathway.展开更多
To find promising new multitargeted AD (Alzheimer's disease) inhibitors, the 3D-QSAR (three-dimensional quantitative structure-activity relationship) model for 32 AD inhibitors was established by using the CoMFA ...To find promising new multitargeted AD (Alzheimer's disease) inhibitors, the 3D-QSAR (three-dimensional quantitative structure-activity relationship) model for 32 AD inhibitors was established by using the CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity index analysis) methods. Results showed that the CoMFA and CoMSIA models were constructed successfully with a good cross-validated coefficient (q2) and a non-cross-validated coefficient (R2), and the binding modes obtained by molecular docking were in agreement with the 3D-QSAR results, which suggests that the present 3D-QSAR model has good predictive capability to guide the design and structural modification of novel multitargeted AD inhibitors. Meanwhile, we found that one side of inhibitory molecule should be small group so that it would be conductive to enter the gorge to interact with the catalytic active sites of AChE (acetylcholinesterase), and the other side of inhibitory molecule should be large group so that it would be favorable for interaction with the peripheral anionic site of ACHE. Furthermore, based on the 3D-QSAR model and the binding modes of AChE and [3-secretase (BACE-1), the designed molecules could both act on dual binding sites of AChE (catalytic and peripheral sites) and dual targets (ACHE and BACE-1). We hope that our results could provide hints for the design of new multitargeted AD derivatives with more potency and selective activity.展开更多
Background:Anisodine hydrobromide(AT3),an anti-cholinergic agent,could be delivered to the brain across the blood-brain barrier and has been used clinically for the treatment of cerebral ischemia/reperfusion injury.En...Background:Anisodine hydrobromide(AT3),an anti-cholinergic agent,could be delivered to the brain across the blood-brain barrier and has been used clinically for the treatment of cerebral ischemia/reperfusion injury.Endothelial dysfunction can be caused by hypoxia/reoxygenation(H/R)via oxidative stress and metabolic alterations.The present study investigated whether AT3 regulates the production of nitric oxide(NO)and reactive oxygen species(ROS),and the HIF-1αpathway via regulation of muscarinic acetylcholine receptors(mAChRs)in brain microvascular endothelial cells after H/R exposure.Methods:Under H/R conditions,hCMEC/D3 cerebral microvascular endothelial cells were treated with AT3.Specific inhibitors of M2-and M4-mAChRs were used to explore the mechanism by which AT3 influences oxidative stress in endothelial cells.Then,mAChRs expression was detected by western blotting and NO production was detected by Greiss reaction.The intracellular ROS level was measured using DCFH-DA probes.The expression of hypoxia-inducible transcription factor 1α(HIF-1α)was also detected.Results:While H/R induced the expression of M2-and M4-mAChRs,AT3 suppressed the H/R-upregulated M2-and M4-mAChRs.H/R also induced the production of NO,ROS,and apoptosis.AT3 and M4-mAChR inhibitors inhibited the H/R-induced production of NO and ROS and apoptosis.HIF-1αwas induced by H/R,but was suppressed by AT3.Conclusion:Thus,the in vitro evidence shows that AT3 protects against H/R injury in cerebral microvascular endothelial cells via inhibition of HIF-1α,NO and ROS,predominantly through the downregulation of M4-mAChR.The findings offer novel understandings regarding AT3-mediated attenuation of endothelial cell apoptosis and cerebral ischemia/reperfusion injury.展开更多
Therapeutic intervention for spinal cord injury is limited,with many approaches relying on strengthening the remaining substrate and driving recovery through rehabilitative training.As compared with learning novel com...Therapeutic intervention for spinal cord injury is limited,with many approaches relying on strengthening the remaining substrate and driving recovery through rehabilitative training.As compared with learning novel compensatory strategies,rehabilitation focuses on resto ring movements lost to injury.Whether rehabilitation of previously learned movements after spinal cord injury requires the molecular mechanisms of motor learning,or if it engages previously trained motor circuits without requiring novel learning remains an open question.In this study,mice we re randomly assigned to receive intrape ritoneal injection with the pan-nicotinic,non-competitive antagonist mecamylamine and the nicotinicα7 subunit selective antagonist methyllycaconitine citrate salt or vehicle(normal saline)prior to motor learning assays,then randomly reassigned after motor learning for rehabilitation study post-injury.Ce rvical spinal co rd dorsal column lesion was used as a model of in complete injury.Results of this study showed that nicotinic acetylcholine signaling was required for motor learning of the single pellet-reaching task but it was dispensable for the rehabilitation of the same task after injury.Our findings indicate that critical diffe rences exist between the molecular mechanisms supporting compensatory motor learning strategies and the restoration of behavior lost to spinal cord injury.展开更多
基金National Natural Science Foundation of China(32202800)Natural Science Foundation of Heilongjiang Province(LH2022C104)+1 种基金Heilongjiang Province Education Department Fundamental Scientifc Research Funds(145109516)Qiqihar University Graduate Innovative Research Project(YJSCX2022016).
文摘Background: No other effects of atropine other than as an antagonist of muscarinic acetylcholine receptor (mAChR) have been found. Methods: In this study, human kidneyepithelial cells were treated with different physiological regulators. Results: Subsequently, it was found that atropine could significantly induce autophagy as demonstrated by the appearance of autophagosome-like double- or single-membrane vesicles in the cytoplasm ofhost cells and the number of GFP-LC3 dots. In addition, increased conversion of the autophagy marker protein LC3-I and LC3-II and increased p62/SQSTM1 indicatedincomplete autophagy. In addition, atropine induced autophagosome levels in a dose-dependent manner within a certain concentration range in human kidney epithelial cells. In atropine-treated mouse skeletal muscle cells containing nicotinic acetylcholinereceptors and rat cardiac muscle cells containing mAchR, atropine induced autophagy in mouse skeletal muscle cells but not in rat cardiac muscle cells. Furthermore, atropine did not induce autophagy in tissue cells containing mAchR in vivo but did in tissue cells not containing mAchR. Conclusion: This study expands the application and understanding of atropine’s action mechanism in the field of medicine.
基金the Natural Science Foundation of Shaanxi, China (2005 Cl 25)
文摘The cholinergic system plays an important role in the central nervous system of insects and is closely related to the complex behavior of insects. The immunohistochemical technique was performed to detect the expression of like-muscarinic acetylcholine receptor M2 in the brain of three castes of Polyrhachis vicina. A positive expression of like-muscarinic acetylcholine receptor M2 was observed in the mushroom body, central body and antennal lobes of the ant brain; but there is great diversity in their location and intensity among worker, queen and male ants. It is speculated that like-muscafinic acetylcholine receptor M2 plays a critical role in the central nervous system, in terms of projecting visual information and olfactory information into the protocerebrum and integrating many inputs.
文摘The antibodies against acetylcholine receptor AchR and levels of SOD and LPO were measured in 11 patients with myasthenia gravis (MG),and the results were compared with normal controls and patients with diseases other than MG.The results showed that the antibodies against AchR were higher as compared with other groups before and after operation. The post-operative level of antibodies was obviously lower than the pre-operative value. An slight increase in SOD and significant decrease in mean value of LPO after surgery were noted. The possible mechanism was discussed.
基金supported by research grants from the National Natural Science Foundation of China (grant no. 81571866 and grant no. 82072137)。
文摘BACKGROUND: Our previous research proved that vagus nerve stimulation(VNS) improved the neurological outcome after cardiopulmonary resuscitation(CPR) by activating α7 nicotinic acetylcholine receptor(α7nAChR) in a rat model, but the underlying mechanism of VNS in neuroprotection after CPR remains unclear.METHODS: In vivo, we established a mouse model of cardiac arrest(CA)/CPR to observe the survival rate, and the changes in inflammatory factors and brain tissue after VNS treatment. In vitro, we examined the effects of α7nAChR agonist on ischemia/reperfusion(I/R)-induced inflammation in BV2 cells under oxygen-glucose deprivation/reoxygenation(OGD/R) conditions. We observed the changes in cell survival rate, the levels of inflammatory factors, and the expressions of α7nAChR/Janus kinase 2(JAK2) and toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB).RESULTS: In vivo, VNS preconditioning enhanced functional recovery, improved the survival rate, and reduced hippocampal CA1 cell damage, and the levels of inflammatory mediators after CA/CPR. The application of α7nAChR agonists provided similar effects against cerebral injury after the return of spontaneous circulation(ROSC), while α7nAChR antagonists reversed these neuroprotective impacts. The in vitro results mostly matched the findings in vivo. OGD/R increased the expression of tumor necrosis factor-alpha(TNF-α), TLR4 and NF-κB p65. When nicotine was added to the OGD/R model, the expression of TLR4, NF-κB p65, and TNF-α decreased, while the phosphorylation of JAK2 increased, which was prevented by preconditioning with α7nAChR or JAK2 antagonists.CONCLUSION: The neuroprotective effect of VNS correlated with the activation of α7nAChR. VNS may alleviate cerebral IR injury by inhibiting TLR4/NF-κB and activating the α7nAChR/JAK2 signaling pathway.
基金Acknowledgments The authors acknowledge the financial support of the Natural Science Foundation of Guangxi Province (No. 2013GXNSFAA019019) and the Natural Science Foundation of Guangxi Province (No. 2013GXNSFAA019041).
文摘To find promising new multitargeted AD (Alzheimer's disease) inhibitors, the 3D-QSAR (three-dimensional quantitative structure-activity relationship) model for 32 AD inhibitors was established by using the CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity index analysis) methods. Results showed that the CoMFA and CoMSIA models were constructed successfully with a good cross-validated coefficient (q2) and a non-cross-validated coefficient (R2), and the binding modes obtained by molecular docking were in agreement with the 3D-QSAR results, which suggests that the present 3D-QSAR model has good predictive capability to guide the design and structural modification of novel multitargeted AD inhibitors. Meanwhile, we found that one side of inhibitory molecule should be small group so that it would be conductive to enter the gorge to interact with the catalytic active sites of AChE (acetylcholinesterase), and the other side of inhibitory molecule should be large group so that it would be favorable for interaction with the peripheral anionic site of ACHE. Furthermore, based on the 3D-QSAR model and the binding modes of AChE and [3-secretase (BACE-1), the designed molecules could both act on dual binding sites of AChE (catalytic and peripheral sites) and dual targets (ACHE and BACE-1). We hope that our results could provide hints for the design of new multitargeted AD derivatives with more potency and selective activity.
基金funding from the National Natural Science Foundation of China(12272246)the Key Research and Development Projects of Sichuan Province(2023YFS0075).
文摘Background:Anisodine hydrobromide(AT3),an anti-cholinergic agent,could be delivered to the brain across the blood-brain barrier and has been used clinically for the treatment of cerebral ischemia/reperfusion injury.Endothelial dysfunction can be caused by hypoxia/reoxygenation(H/R)via oxidative stress and metabolic alterations.The present study investigated whether AT3 regulates the production of nitric oxide(NO)and reactive oxygen species(ROS),and the HIF-1αpathway via regulation of muscarinic acetylcholine receptors(mAChRs)in brain microvascular endothelial cells after H/R exposure.Methods:Under H/R conditions,hCMEC/D3 cerebral microvascular endothelial cells were treated with AT3.Specific inhibitors of M2-and M4-mAChRs were used to explore the mechanism by which AT3 influences oxidative stress in endothelial cells.Then,mAChRs expression was detected by western blotting and NO production was detected by Greiss reaction.The intracellular ROS level was measured using DCFH-DA probes.The expression of hypoxia-inducible transcription factor 1α(HIF-1α)was also detected.Results:While H/R induced the expression of M2-and M4-mAChRs,AT3 suppressed the H/R-upregulated M2-and M4-mAChRs.H/R also induced the production of NO,ROS,and apoptosis.AT3 and M4-mAChR inhibitors inhibited the H/R-induced production of NO and ROS and apoptosis.HIF-1αwas induced by H/R,but was suppressed by AT3.Conclusion:Thus,the in vitro evidence shows that AT3 protects against H/R injury in cerebral microvascular endothelial cells via inhibition of HIF-1α,NO and ROS,predominantly through the downregulation of M4-mAChR.The findings offer novel understandings regarding AT3-mediated attenuation of endothelial cell apoptosis and cerebral ischemia/reperfusion injury.
基金supported by the Burke Foundation and the National Institutes of Health Common Fund,No.DP2 NS106663(to ERH)the New York State Department of Health Spinal Cord Injury Research Board Postdoctoral Fellowship,No.C32633GG(to YL)。
文摘Therapeutic intervention for spinal cord injury is limited,with many approaches relying on strengthening the remaining substrate and driving recovery through rehabilitative training.As compared with learning novel compensatory strategies,rehabilitation focuses on resto ring movements lost to injury.Whether rehabilitation of previously learned movements after spinal cord injury requires the molecular mechanisms of motor learning,or if it engages previously trained motor circuits without requiring novel learning remains an open question.In this study,mice we re randomly assigned to receive intrape ritoneal injection with the pan-nicotinic,non-competitive antagonist mecamylamine and the nicotinicα7 subunit selective antagonist methyllycaconitine citrate salt or vehicle(normal saline)prior to motor learning assays,then randomly reassigned after motor learning for rehabilitation study post-injury.Ce rvical spinal co rd dorsal column lesion was used as a model of in complete injury.Results of this study showed that nicotinic acetylcholine signaling was required for motor learning of the single pellet-reaching task but it was dispensable for the rehabilitation of the same task after injury.Our findings indicate that critical diffe rences exist between the molecular mechanisms supporting compensatory motor learning strategies and the restoration of behavior lost to spinal cord injury.