期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Acetic acid additive in NaNO_(3)aqueous electrolyte for long-lifespan Mg-air batteries
1
作者 Yaqing Zhou Fan Sun +4 位作者 Gunahua Lin Sandrine Zanna Antoine Seyeux Philippe Marcus Jolanta´Swiatowska 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期825-839,共15页
Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environ... Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries. 展开更多
关键词 Acetic acid additive in NaNO_(3)electrolyte electrolyte engineering Corrosion surface film Surface characterization Hydrogen evolution
下载PDF
High-Effi ciency Catalytic Interface IrO x/CeO_(2)with Adsorbate Evolution Mechanism Boosts Oxygen Evolution Reaction in Acid Media 被引量:1
2
作者 Hongyu Zhao Jie Yin Pinxian Xi 《Transactions of Tianjin University》 EI CAS 2023年第5期395-405,共11页
Oxygen evolution reaction(OER)in acid media has been intensively studied recently for its important role in proton exchange membrane electrolyzers.CeO_(2)-based nanomaterials have been widely used in various applicati... Oxygen evolution reaction(OER)in acid media has been intensively studied recently for its important role in proton exchange membrane electrolyzers.CeO_(2)-based nanomaterials have been widely used in various applications for their redox properties,oxygen vacancy,and surface activity.CeO_(2)-based nanocatalysts also exhibit superior catalytic performance in OER in acid media.Herein,we fabricated a highly effi cient catalytic interface between IrO x and CeO_(2)(IrO x/CeO_(2)),which showed a boosting OER activity with an overpotential of 217 mV at the current density of 10 mA/cm 2 and long-term stability for 10 h in 0.5 mol/L H_(2)SO_(4),which were better than those of many reported catalysts.The in situ diff erential electrochemical mass spectrometry results demonstrated that IrO x/CeO_(2)and the commercial IrO 2(IrO 2-com)followed the adsorbate evolution mechanism,whereas the pure CeO_(2)surface followed the lattice oxygen oxidation mechanism under the same conditions for OER.These indicated that the interface of IrO x and CeO_(2)improved mass transfer effi ciency and reactivity,which also prevented the lattice oxygen evolution in the CeO_(2)structure and protected the whole structure.This work fi nds a new way for OER in acid media catalyzed by CeO_(2)-based nanocatalysts and promotes the design strategy for other CeO_(2)-based nanostructures. 展开更多
关键词 OER Rare-earth oxide Ir-O cluster acid electrolyte
下载PDF
The Electrodeposition of Rhenium in Alkaline and Acidic Elektrolytes 被引量:1
3
作者 Elza Salakhova Vusala Majidzade Firuza Novruzova Parvana Kalantarova Ramila Husevnova 《Journal of Chemistry and Chemical Engineering》 2012年第5期489-494,共6页
The investigation of electrodeposition of rhenium in alkaline and acidic electrolytes was carried out, polarization curves were obtained by electrochemically and cyclically potentiodynamic methods. By the investigatio... The investigation of electrodeposition of rhenium in alkaline and acidic electrolytes was carried out, polarization curves were obtained by electrochemically and cyclically potentiodynamic methods. By the investigation of rhenium concentration, sulphuric acid, alkali, ammonium sulphate, temperature and acidity of solution, it was found that reaming velocity was an optimal regime and electrolyte composition for an obtaining of high quality rhenium deposits from an alkaline electrolyte and acidic electrolyte. It was defined that the process of electrodeposition of rhenium in alkaline electrolyte is accompanied by chemical polarization and the electrodeposition of rhenium in acidic electrolyte goes gradually with the formation of intermediate films of sediments, 展开更多
关键词 ELECTRODEPOSITION RHENIUM ALKALINE acidic electrolyte.
下载PDF
Effects of Drinking Slightly Acidic Electrolytic Water on Growth Performance and Behavior of Broilers 被引量:1
4
作者 Ji Zhenzhen Hui Xue +2 位作者 Shi Zhifang Xi Lei Zhai Feile 《Animal Husbandry and Feed Science》 CAS 2020年第3期25-29,共5页
[Objective]The paper was to study the effects of drinking slightly acidic electrolytic water on growth performance and behavior of Rose 308 broilers,and to provide reference for the application of slightly acidic elec... [Objective]The paper was to study the effects of drinking slightly acidic electrolytic water on growth performance and behavior of Rose 308 broilers,and to provide reference for the application of slightly acidic electrolytic water in broiler breeding.[Method]A total of 300 healthy 10-day-old Rose 308 broilers with similar body weight were randomly divided into five groups,three replicates each group,20 broilers each replicate.The broilers in control group were supplied with normal drinking water,and the broilers in experimental groups consumed slightly acidic electrolytic water with 0.3,0.5,0.7,1.0 mg/L residual chlorine,respectively.The test lasted 21 d.[Result]At 10-30 days of age,the water consumption of broilers in 0.7 and 1.0 mg/L electrolytic water groups were increased by 9.27%and 7.67%respectively compared with the control group(M<0.05).The average daily feed intake(ADFI)of broilers in 0.7 and 1.0 mg/L electrolytic water groups were increased compared with the control group(Q0.05).The average daily gain(ADG)of broilers in 0.7 mg/L electrolytic water group was 11.99%lower than that in control group(M<0.05).The feed gain ratio(F/G)of broilers in 0.5 mg/L electrolytic water group was 12.29%lower than that in control group(M<0.05),and the mortality was the lowest in 0.5 mg/L electrolytic water group.The standing,feeding and drinking frequency of broilers in experimental groups were higher than that in control group,and the flapping behavior of broilers in 0.5 mg/L electrolytic water group was the lowest.[Conclusion]Drinking slightly acidic electrolytic water has positive effect on the growth and behavior of broilers. 展开更多
关键词 Slightly acidic electrolytic water Rose 308 broilers Growth performance BEHAVIOR
下载PDF
Surface iodine and pyrenyl-graphdiyne co-modified Bi catalysts for highly efficient CO_(2) electroreduction in acidic electrolyte 被引量:1
5
作者 Min Zhang Juan Wang +2 位作者 Xin Rong Xiu-Li Lu Tong-Bu Lu 《Nano Research》 SCIE EI CSCD 2024年第4期2381-2387,共7页
CO_(2) electroreduction to formic acid/formate would contribute to alleviating the energy and climate crisis.This work reports a Bi-based catalyst derived from the in-situ electroreduction of Bi_(2)O_(2)CO_(3) modifie... CO_(2) electroreduction to formic acid/formate would contribute to alleviating the energy and climate crisis.This work reports a Bi-based catalyst derived from the in-situ electroreduction of Bi_(2)O_(2)CO_(3) modified with iodine and pyrenyl-graphdiyne(PGDY)on the surface for efficient electroreduction of CO_(2) in acidic electrolyte,with a high partial current density of 98.71 mA·cm^(-2) and high Faradaic efficiency(FE)>90%over the potential range from^(-1).2 to-1.5 V vs.reversible hydrogen electrode(RHE),as well as the long-term operational stability over 240 h without degradation in H-type cell.Experimental results and density function theory calculations show that the synergistic effect of surface iodine and PGDY is responsible for this active and extremely stable process of CO_(2) electroreduction via lowering the energy barriers for formation of*OCHO intermediate,suppressing the competitive HER by enhancing the concentration of both K+and CO_(2) at reaction interface,as well as preventing the dissolution and re-deposition of active Bi atoms on surface during catalytic reaction.This work provides new insight into designing highly active and stable electrocatalysts for CO_(2) reduction. 展开更多
关键词 CO_(2) reduction electrocatalysis Bi-based catalysts acidic electrolyte
原文传递
Influence of oxidation heat on hard anodic film of aluminum alloy 被引量:5
6
作者 魏晓伟 陈朝英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2707-2712,共6页
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t... The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant. 展开更多
关键词 aluminum alloy 2024 aluminum alloy oxidation heat sulfuric acid electrolyte hard anodic oxidation anodic film
下载PDF
Interfacial parasitic reactions of zinc anodes in zinc ion batteries:Underestimated corrosion and hydrogen evolution reactions and their suppression strategies 被引量:15
7
作者 Aruuhan Bayaguud Yanpeng Fu Changbao Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期246-262,I0007,共18页
Featured with high power density,improved safety and low-cost,rechargeable aqueous zinc-ion batteries(ZIBs) have been revived as possible candidates for sustainable energy storage systems in recent years.However,the c... Featured with high power density,improved safety and low-cost,rechargeable aqueous zinc-ion batteries(ZIBs) have been revived as possible candidates for sustainable energy storage systems in recent years.However,the challenges inherent in zinc(Zn) anode,namely dendrite formation and interfacial parasitic reactions,have greatly impeded their practical application.Whereas the critical issue of dendrite formation has attracted widespread concern,the parasitic reactions of Zn anodes with mildly acidic electrolytes have received very little attentions.Considering that the low Zn reversibility that stems from interfacial parasitic reactions is the major obstacle to the commercialization of ZIBs,thorough understanding of these side reactions and the development of correlative inhibition strategies are significant.Therefore,in this review,the brief fundamentals of corrosion and hydrogen evolution reactions at Zn surface is presented.In addition,recent advances and research efforts addressing detrimental side reactions are reviewed from the perspective of electrode design,electrode-electrolyte interfacial engineering and electrolyte modification.To facilitate the future researches on this aspect,perspectives and suggestions for relevant investigations are provided lastly. 展开更多
关键词 Zinc anodes Mildly acidic electrolytes Side reactions Coulombic efficiency Corrosions HER
下载PDF
N,O co-doped porous carbon with rich pseudocapacitive groups exhibiting superior energy density in an acidic 2.4 V Li_(2)SO_(4)electrolyte
8
作者 Xiao Wang Kaixiang Zou +2 位作者 Weijing Wu Yuanfu Deng Guohua Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3883-3888,共6页
Designing a carbon material with a unique composition and surface functional groups for offering high specific capacity in a wide voltage window is of great significance to improve the energy density for the supercapa... Designing a carbon material with a unique composition and surface functional groups for offering high specific capacity in a wide voltage window is of great significance to improve the energy density for the supercapacitor in a cheap and eco-friendly aqueous electrolyte.Herein,we develop an efficient strategy to synthesize a N,O co-doped hierarchically porous carbon(NODPC-1.0)with moderate specific surface area and pore volume as well as rich heteroatoms using a deep eutectic solvent(DES)as an activator.It is found that NODPC-1.0 with a large proportion of pseudocapacitive functional groups(pyrrole-N,pyridineN and carbonyl-quinone)can work stable in an acidic 2 mol/L Li_(2)SO_(4)(pH 2.5)electrolyte,exhibiting specific capacities of 375 and 186 F/g at the current densities of 1.0 and 100 A/g,respectively.Also,the assembled symmetric capacitor using the NODPC-1.0 as the active material and 2 mol/L acidic Li_(2)SO_(4)(pH 2.5)as the electrolyte shows an outstanding energy density of 74.4 Wh/kg at a high power density of 1.44 k W/kg under a broad voltage window(2.4 V).Relevant comparative experiments indicate that H+of the acidic aqueous electrolyte plays a crucial part in enhancement the specific capacity,and the abundant pseudocapacitive functional groups on the surface of the NODPC-1.0 sample play the key role in the improvement of electrochemical cycle stability under a broad voltage window. 展开更多
关键词 Hierarchically porous carbon acidic Li_(2)SO_(4)electrolyte N O co-doped carbon Supercapacitor High work voltage
原文传递
Self-supported high-entropy alloy electrocatalyst for highly efficient H_(2) evolution in acid condition 被引量:12
9
作者 Peiyan Ma Mingming Zhao +5 位作者 Long Zhang Heng Wang Junfeng Gu Yuchen Sun Wei Ji Zhengyi Fu 《Journal of Materiomics》 SCIE EI 2020年第4期736-742,共7页
Developing non-precious catalysts as Pt substitutes for electrochemical hydrogen evolution reaction(HER)with superior stability in acidic electrolyte is of critical importance for large-scale,low-cost hydrogen product... Developing non-precious catalysts as Pt substitutes for electrochemical hydrogen evolution reaction(HER)with superior stability in acidic electrolyte is of critical importance for large-scale,low-cost hydrogen production from water.Herein,we report a CoCrFeNiAl high-entropy alloy(HEA)electrocatalyst with self-supported structure synthesized by mechanical alloying and spark plasma sintering(SPS)consolidation.The HEA after HF treatment and in situ electrochemical activation for 4000 cycles of cyclic voltammetry(HF-HEAa2)presents favourable activity with overpotential of 73 mV to reach a current density of 10 mA cm^(2) and a Tafel slope of 39.7 mV dec1.The alloy effect of Al/Cr with Co/Fe/Ni at atomic level,high-temperature crystallization,as well as consolidation by SPS endow CoCrFeNiAl HEA with high stability in 0.5 M H2SO4 solution.The superior performance of HF-HEAa2 is related with the presence of metal hydroxides/oxides groups on HEA. 展开更多
关键词 loy Hydrogen evolution reaction ELECTROCATALYSTS acidic electrolyte Stability
原文传递
Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation 被引量:11
10
作者 Hui Su Mikhail A.Soldatov +1 位作者 Victor Roldugin Qinghua Liu 《eScience》 2022年第1期102-109,共8页
The design of active acidic oxygen evolution reaction(OER)catalysts is of paramount importance to achieve efficient large-current-density industrial hydrogen fuel production via water electrolysis.Herein,we develop a ... The design of active acidic oxygen evolution reaction(OER)catalysts is of paramount importance to achieve efficient large-current-density industrial hydrogen fuel production via water electrolysis.Herein,we develop a Pt-based catalyst with high electrochemical activity for the OER in acidic conditions under a large current.We achieve this by modulating the electronic structure of Pt into a high-valence,electron-accessible Pt1^((2.4+δ)+)(δ=0-0.7)state during the reaction.This electron-accessible Pt1^((2.4+δ)+)single-site catalyst can effectively maintain a large OER current density of 120 mA cm^(-2)for more than 12 h in 0.5 M H_(2)SO_(4) at a low overpotential of 405 mV,and it shows a high mass activity of~3350 A gmetal^(-1)at 10 mA cm^(-2) current density and 232 mV overpotential.Using in situ synchrotron radiation infrared and X-ray absorption spectroscopies,we directly observe in an experiment that a key(*O)-Pt_(1)-C_(2)N_(2) intermediate is produced by the potential-driven structural optimization of square pyramidal Pt_(1)-C_(2)N_(2) moieties;this highly favors the dissociation of H_(2)O over Pt1^(2.4+δ)^(+)sites and prevents over-oxidation and dissolution of the active sites. 展开更多
关键词 Oxygen evolution reaction acidic electrolyte In situ characterization
原文传递
Electrifying the future:the advances and opportunities of electrocatalytic carbon dioxide reduction in acid
11
作者 Runhao Zhang Haoyuan Wang +3 位作者 Yuan Ji Qiu Jiang Tingting Zheng Chuan Xia 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第12期3426-3442,共17页
Transforming carbon dioxide(CO_(2))into products using renewable electricity is a crucial and captivating quest for a green and circular economy.Compared with commonly used alkali electrolytes,acidic media for electro... Transforming carbon dioxide(CO_(2))into products using renewable electricity is a crucial and captivating quest for a green and circular economy.Compared with commonly used alkali electrolytes,acidic media for electrocatalytic CO_(2) reduction(CO_(2)RR)boasts several advantages,such as high carbon utilization efficiency,high overall energy utilization rate,and low carbonate formation,making it a compelling choice for industrial applications.However,the acidic CO_(2)RR also struggles with formidable hurdles,encompassing the fierce competition with the hydrogen evolution reaction,the low CO_(2) solubility and availability,and the suboptimal performance of catalysts.This review provides a comprehensive overview of the CO_(2)RR in acidic media.By elucidating the underlying regulatory mechanism,we gain valuable insights into the fundamental principles governing the acidic CO_(2)RR.Furthermore,we examine cutting-edge strategies aimed at optimizing its performance and the roles of reactor engineering,especially membrane electrode assembly reactors,in facilitating scalable and carbon efficient conversion.Moreover,we present a forward-looking perspective,highlighting the promising prospects of acidic CO_(2)RR research in ushering us towards a carbon-neutral society. 展开更多
关键词 electrocatalytic CO_(2)reduction acidic electrolyte MICROENVIRONMENT alkali metal cations electrolysers
原文传递
The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes
12
作者 Nasr Bensalah Sondos Dbira Ahmed Bedoui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期115-123,共9页
In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond(BDD) anodes was investigated in different electrolytes. A complete mineraliz... In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond(BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in Na Cl;however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and Na Cl O4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine(Cl2, HCl O, Cl O-)electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density(≤ 10 m A/cm2) and neutral medium(p H in the range 6–9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. 展开更多
关键词 Electrolytic degradation Diamond anode Supporting electrolyte Mediated oxidation Cyanuric acid
原文传递
Water molecules regulation for reversible Zn anode in aqueous zinc ion battery:Mini-review
13
作者 Jie Zhou Quanyu Li +6 位作者 Xiaomeng Hu Weifeng Wei Xiaobo Ji Guichao Kuang Liangjun Zhou Libao Chen Yuejiao Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期50-61,共12页
With the low cost,excellent safety and high theoretical specific capacity,aqueous zinc-ion batteries(AZ-IBs)are considered as a potential rival for lithium-ion batteries to promote the sustainable development of large... With the low cost,excellent safety and high theoretical specific capacity,aqueous zinc-ion batteries(AZ-IBs)are considered as a potential rival for lithium-ion batteries to promote the sustainable development of large-scale energy storage technologies.However,the notorious Zn dendrites and low Coulombic effi-ciency(CE)limit further development of AZIBs,due to the unstable electrochemical deposition/stripping behavior of Zn anode in aqueous zinc ion electrolytes.In this review,critical issues and advances are summarized in electrolyte engineering strategies.These strategies are focused on active water molecules during electrochemical process,including high-concentration electrolytes,ionic liquids,gel-polymer elec-trolytes and functional additives.With suppressed active water molecules,the solvation and de-solvation behavior of Zn^(2+)can be regulated,thereby modulating the electrochemical performance of Zn anode.Finally,the inherent problems of these strategies are discussed,and some promising directions are pro-vided on electrolytes engineering for high performance Zn anode in AZIBs. 展开更多
关键词 electrolyte engineering Aqueous zinc ion battery Zinc metal anode Dendrite suppression Mildly acidic electrolyte
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部