Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids...Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids (VFA) was proportional to the chemical oxygen demand (COD) loading rate.The yield of VFA was around 0.28 g VFA/g COD over the COD loading rate from 1.25 to 30 g COD·L -1 ·d -1 and the hydraulic retention time from 8.8 h to 24 h.Distribution of organic acids,the contents of propionic and butyric acids in the effluent in particular were also dependent on the COD loading rate.The thermophilic UASB reactor showed a stable performance on hydrolysis and acidogenesis of starch as well as suspended solid removal at short hydraulic retention times and high influent pH(10~11),during the operation of 110 d.展开更多
As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%—78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conduc...As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%—78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conducted in a serial of activated sludge reactors with TPW-water. TA appeared to be readily biodegradable with removal efficiency over 96.5% under aerobic conditions, hardly biodegradable with removal efficiency below 10% under anoxic conditions and slowly biodegradable with a turnover between 31.4% and 56.0% under anaerobic conditions. TA also accounted for the majority of BOD in TPW-water. The process combined by anoxic, anaerobic and aerobic activated sludge reactor was suitable for TA degradation and TPW-water treatment. Further, the aerobic process was essentially much more effective than the anaerobic or anoxic one to degrade TA in TPW-water.展开更多
High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced ...High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfarninic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BODs)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants.展开更多
The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process( CASP). Sludge loading ...The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process( CASP). Sludge loading rate(SLR) for Fhhh to COD of the wastewater was 1.09 d^-1 and to PTA in the wastewater was 0.29 d^-1. The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were .5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.展开更多
Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in th...Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.展开更多
The high strength easily biodegradable pollutants (represented by COD E) are strong inhibitors of terephthalic acid (TA) anaerobic biodegradation. At the same time, TA can inhibit easily biodegradable pollutants remo...The high strength easily biodegradable pollutants (represented by COD E) are strong inhibitors of terephthalic acid (TA) anaerobic biodegradation. At the same time, TA can inhibit easily biodegradable pollutants removal under anaerobic conditions to a limited extent. This mutual inhibition could happen and cause a low removal efficiency of both TA and COD E, when the effluent from TA workshops containing TA and easily biodegradable pollutants are treated by a single anaerobic reactor system. Based upon the treatment kinetics analysis of both TA degradation and COD E removal, a two stage up flow anaerobic sludge blanket and up flow fixed film reactor(UASB UAFF) system for dealing with this kind of wastewater was developed and run successfully at laboratory scale. An UASB reactor with the methanogenic consortium as the first stage removes the easily biodegradable pollutants(COD E). An UAFF reactor as the second stage is mainly in charge of TA degradation. At a COD E loading of 15.3 g/(L\5d) and a TA loading of 1.4 g/(L\5d), HRT 18.5h, the COD E and TA removal rate of the system reached 89.2% and 71.6%, respectively.展开更多
The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirri...The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from plateletlike and nee dlelike shape to rodlike shape when the temperature was increased from 25 to 70 ℃. An increase in the agglom.展开更多
Wastewater containing high concentrations of phenol and sodium sulfate is generated in sebacic acid (SA) industry. Castor oil acid, a raw material for producing SA, can be used to extract phenol from wastewater in o...Wastewater containing high concentrations of phenol and sodium sulfate is generated in sebacic acid (SA) industry. Castor oil acid, a raw material for producing SA, can be used to extract phenol from wastewater in order to reduce the amount of phenol used in the process and discharge of phenol. The results show that the extrac- tion mechanism is that hydroxyl group of phenol is linked to carboxyl group of castor oil acid by hydrogen bond. The extraction process approaches equilibrium in 30 min. Extraction ratio increases with the increase of sodium sulfate and castor oil acid, and decreases as phenol increases. When the oil-water ratio is 1 : 3, the optimal distribu- tion coefficient of 40 is obtained. Phenol saturation concentration in castor oil acid is 1.03 mol.L-1 after extraction for 4 times. The equilibrium constant (Kex) at 25℃ is 8.41 and the endothermic enthalpy (AH) is 1.513 kJ.mo1-1. The Gibbs free energy (AG) is -5.277 kJ. tool-1 and the value of AS is calculated to be 22.3 J. mo1-1. K-1.展开更多
The wastewater treatment from brassylic acid manufacturing plant using membrane bioreactor (MBR) was studied. The membrane bioreactor consisted of batch-operation biological aeration tank and ultrafiltration evaluatio...The wastewater treatment from brassylic acid manufacturing plant using membrane bioreactor (MBR) was studied. The membrane bioreactor consisted of batch-operation biological aeration tank and ultrafiltration evaluation tank. The content of test included the affection of variation operation conditions on ultrafiltration separation, the general characteristics of MBR process, and the difference comparing with the conventional biological treatment. The results are as follows: (1) among the test membrane material, polyether sulphone (PES) membrane is more suitable for the wastewater treatment; (2) when the cutoff molecular weight is among 10000-50000, the higher the cutoff molecular weight, the bigger the water flux is in the test; (3) under the operation pressure, water flux increases accompanying with the increasing of operation pressure; (4) the paper filtered COD concentration has more affection on the water flux than the suspended solid concentration; ( 5) as they volume loading of MBR increases, the accumulation of high molecule organic substance and colloid increases, the membrane,permeate COD concentration and paper filtered COD concentration increase too, meanwhile the water flux reduces; (6) when the sludge retention time of activated sludge of MBR increases, the accumulation of high molecule organic substance and colloid reduces, the membrane permeate (:OD concentration and paper filtered COD concentration reduce too, and the water flux increases; (7) comparing with the conventional biological process, the microbial activity is higher, but the microbial species is less.展开更多
The effluent from phenyl acetic acid (PhCH2COOH) production process can betreated with NDA-999 macroporous polymeric adsorbent with about 100% removalefficiency of PhCH2COOK benzyl alcohol (PhCH2OH)and benzaldehyde (P...The effluent from phenyl acetic acid (PhCH2COOH) production process can betreated with NDA-999 macroporous polymeric adsorbent with about 100% removalefficiency of PhCH2COOK benzyl alcohol (PhCH2OH)and benzaldehyde (PhCHO) aswell as the decrease in Total Organic Carbon (TOC)from 4691mg/l to <300mg/L. 3. 7kgPhCH2COOH and 120kg NaCl will be recovered from per m3 wastewater and theadsorbent can be reused after being regenerated by NaOH aqueous solution andmethanol. Good economic, social and environmental results can be achieved with thismethod.展开更多
The hydrometallurgical strategy of extracting Mn from low-grade Mn ores has attracted attention for the production of electrolytic manganese metal(EMM). In this work, the reductive dissolution of low-grade Mn O2 ores ...The hydrometallurgical strategy of extracting Mn from low-grade Mn ores has attracted attention for the production of electrolytic manganese metal(EMM). In this work, the reductive dissolution of low-grade Mn O2 ores using toxic nitrocellulose acidic wastewater(NAW) as a reductant was investigated for the first time. Under the optimized conditions of an Mn O2 ore dosage of 100 g·L-1, an ore particle size of-200 mesh, concentrated H2 SO4-to-NAW volume ratio of 0.12, reaction temperature of 90°C, stirring speed at 160 r·min-1, and a contact time of 120 min, the reductive leaching efficiency of Mn and the total organic carbon(TOC) removal efficiency of NAW reached 97.4% and 98.5%, respectively. The residual TOC of 31.6 mg·L-1 did not adversely affect the preparation of EMM. The current process offers a feasible route for the concurrent realization of the reductive leaching of Mn and the treatment of toxic wastewater via a simple one-step process.展开更多
The fungi Phanerochaete chrysosporium (PC) and Saccharomyces cerevisiae Y99 and the native bacterium YZ1 were the three parental strains for construction of hybrid cells through protoplast fusion to degrade te...The fungi Phanerochaete chrysosporium (PC) and Saccharomyces cerevisiae Y99 and the native bacterium YZ1 were the three parental strains for construction of hybrid cells through protoplast fusion to degrade terephthalic acid (TPA) wastewater. The results showed that the native bacterium YZ1 protoplasm could integrate with that of PC to form the hybrid cell Fhh and the fungus Y99 protoplasm also could integrate with that of Fhh to form the hybrid cell Fhhh. The protoplasts of YZ1 and Y99 could change the morphology of PC spore and mycelium for two times. The hybrid cell Fhhh got the best growth and degradation abilities in the wastewater. It suggested that the hybrid strains obtained from the inter\|kingdom protoplast fusion of the three parental strains could create potential for the purification of TPA wastewater.展开更多
As a natural yellow pigment,lutein is widely used in the human food and forage.A lot of wastewater is generated in this industry.It is urgent to deal with fermentative marigold wstewater for lutein industry.How to pro...As a natural yellow pigment,lutein is widely used in the human food and forage.A lot of wastewater is generated in this industry.It is urgent to deal with fermentative marigold wstewater for lutein industry.How to process the wastewatwer is more important.Centre on the process of fermentative marigold wstewater,used by polyaluminium chloride to flocculate,active carbon to bleach,then evaporating in the vacuum state and getting lactic acid finally.展开更多
The paper provides a critical comparison between mesophilic and thermophilic anaerobic treatment of PTA wastewater through diagnosis of a case study. Aspects covered are bioavailability, biodegradability, microbial po...The paper provides a critical comparison between mesophilic and thermophilic anaerobic treatment of PTA wastewater through diagnosis of a case study. Aspects covered are bioavailability, biodegradability, microbial population, thermodynamics, kinetics involved and bio-reactor design for PTA wastewater treatment. The results of the case study suggests that one- stage thermophilic anaerobic reactor coupled with coagulation-flocculation pre-treatment unit and an aerobic post treatment unit could be techno-economically viable for PTA wastewater treatment to ensure that the final effluent quality conforms to the international standard. The in-formation emanated from this study could be useful and thought provoking to the professionals and academia in the area of PTA wastewater treatment and can serve as impetus toward the development of research lines in similar problems like the treatment of other petrochemical wastewater such as phenol-con- taining wastewater, benzene/benzoic acid-con- taining wastewater or wastewater from other similar industrial settings.展开更多
[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, an...[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement.展开更多
4,4’-diaminostilbene-2, 2’-disulfonic acid (DSD acid) manufacturing wastewater was treated by a macroporous resin in a fixed-bed column. The results showed that this method was suitable for removal of chemical oxyge...4,4’-diaminostilbene-2, 2’-disulfonic acid (DSD acid) manufacturing wastewater was treated by a macroporous resin in a fixed-bed column. The results showed that this method was suitable for removal of chemical oxygen demands (COD) and color. About 91% COD and 99.5% color removal were obtained under the optimum adsorption conditions, i.e. temperature 20℃, flow rate 1bed volume/hour (BV/hr) and pH1-2. The resin was efficiently regenerated with aqueous sodium hydroxide and water. Furthermore, 65.5% of 4,4’-dinitrostilbene-2, 2’-disulfonic acid (DNS) could be recovered from wastewater for possible recycling to the manufacturing process. The adsorption capacity of resin remained constant during the repetition process of adsorption and desorption.展开更多
The biocidal effects of free nitrous acid (FNA) have found applications in multiple units in an urban wastewater system, including sewer networks, wastewater treatment processes, and sludge treatment processes. Howeve...The biocidal effects of free nitrous acid (FNA) have found applications in multiple units in an urban wastewater system, including sewer networks, wastewater treatment processes, and sludge treatment processes. However, these applications are associated with chemical costs as both nitrite and acid are needed to produce FNA at the required levels. The recent discovery of novel acid-tolerant ammonia oxidizers offers the possibility to produce FNA from domestic wastewater, enabling the development of next-generation FNA-based technologies capable of achieving self-sustaining FNA production. In this study, we focus on the concept of in situ FNA generation facilitated by acid-tolerant ammonia oxidizers and highlight the multiple benefits it creates, after a brief review of the historical development of FNA-based technologies. We will discuss how wastewater systems can be made more energy-efficient and sustainable by leveraging the potential of acid-tolerant ammonia oxidizers.展开更多
Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter ...Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy(SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides(EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide,and phospholipid fatty acids(PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coeffcient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path(Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.展开更多
The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation te...The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation test.The results of the saponification reaction test indicated that the optimal conditions for the saponification were stirring rate of 55 r/min,initial temperature of 40℃ and stirring time of 45 min.Meanwhile,the laboratory scale and industrial scale flotation experiments showed that the fatty acid salt synthesized by wastewater achieved an index comparable to fatty acid sodium synthesized by sodium hydroxide.As a consequence,it was feasible to replace sodium hydroxide with the wastewater from zeolite production for fatty acid saponification.The cross-border utilization of waste alkali liquids not only reduced environmental pollution,but also produced excellent economic benefits.展开更多
Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status...Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status. The parameter, as the objective function for the judgment, is the minimum reactor volume( V _ min ) calculated by Ebis for microorganism required in wastewater treatment. The rationality and the universality of Ebis were demonstrated in the domestic sewage treatment system(DSTS) with the data published in USA and China at first,then Fhhh strain's potential for treating the purified terephthalic acid(PTA) was proved. It suggests that Ebis would be useful and universal for predicating the technique effectiveness in both DSTS and IWTS.展开更多
文摘Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids (VFA) was proportional to the chemical oxygen demand (COD) loading rate.The yield of VFA was around 0.28 g VFA/g COD over the COD loading rate from 1.25 to 30 g COD·L -1 ·d -1 and the hydraulic retention time from 8.8 h to 24 h.Distribution of organic acids,the contents of propionic and butyric acids in the effluent in particular were also dependent on the COD loading rate.The thermophilic UASB reactor showed a stable performance on hydrolysis and acidogenesis of starch as well as suspended solid removal at short hydraulic retention times and high influent pH(10~11),during the operation of 110 d.
文摘As the characteristic pollutant, terephthalic acid(TA)was in charge of 40%—78% of the total COD of terylene artificial silk printing and dyeing wastewater(TPW-water). The studies on biodegradability of TA were conducted in a serial of activated sludge reactors with TPW-water. TA appeared to be readily biodegradable with removal efficiency over 96.5% under aerobic conditions, hardly biodegradable with removal efficiency below 10% under anoxic conditions and slowly biodegradable with a turnover between 31.4% and 56.0% under anaerobic conditions. TA also accounted for the majority of BOD in TPW-water. The process combined by anoxic, anaerobic and aerobic activated sludge reactor was suitable for TA degradation and TPW-water treatment. Further, the aerobic process was essentially much more effective than the anaerobic or anoxic one to degrade TA in TPW-water.
基金supported by the National Natural Science Foundation of China (No.50678045)
文摘High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfarninic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BODs)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants.
基金Ph.D Fund of the National Education Ministry of China(20030284038) and the Hi-Tech Research and Development Program (863) of China(2001AA216191)
文摘The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process( CASP). Sludge loading rate(SLR) for Fhhh to COD of the wastewater was 1.09 d^-1 and to PTA in the wastewater was 0.29 d^-1. The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were .5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.
基金Projects(51304251,51504299)supported by the National Natural Science Foundation of ChinaProject(201509050)+1 种基金supported by Special Program on Environmental Protection for Public Welfare,ChinaProject(k1502037-31)supported by Key Project of Changsha,China
文摘Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.
文摘The high strength easily biodegradable pollutants (represented by COD E) are strong inhibitors of terephthalic acid (TA) anaerobic biodegradation. At the same time, TA can inhibit easily biodegradable pollutants removal under anaerobic conditions to a limited extent. This mutual inhibition could happen and cause a low removal efficiency of both TA and COD E, when the effluent from TA workshops containing TA and easily biodegradable pollutants are treated by a single anaerobic reactor system. Based upon the treatment kinetics analysis of both TA degradation and COD E removal, a two stage up flow anaerobic sludge blanket and up flow fixed film reactor(UASB UAFF) system for dealing with this kind of wastewater was developed and run successfully at laboratory scale. An UASB reactor with the methanogenic consortium as the first stage removes the easily biodegradable pollutants(COD E). An UAFF reactor as the second stage is mainly in charge of TA degradation. At a COD E loading of 15.3 g/(L\5d) and a TA loading of 1.4 g/(L\5d), HRT 18.5h, the COD E and TA removal rate of the system reached 89.2% and 71.6%, respectively.
基金Supported by the National High Technology Research and Development Program of China(2011AA060701)the National Water Pollution Control and Management Science Program of China(2009ZX07529-005)
文摘The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from plateletlike and nee dlelike shape to rodlike shape when the temperature was increased from 25 to 70 ℃. An increase in the agglom.
基金Supported by the National Natural Science Foundation of China (21006057) and the National Science Foundation for Post-doctoral Scientists of China (20100470351).
文摘Wastewater containing high concentrations of phenol and sodium sulfate is generated in sebacic acid (SA) industry. Castor oil acid, a raw material for producing SA, can be used to extract phenol from wastewater in order to reduce the amount of phenol used in the process and discharge of phenol. The results show that the extrac- tion mechanism is that hydroxyl group of phenol is linked to carboxyl group of castor oil acid by hydrogen bond. The extraction process approaches equilibrium in 30 min. Extraction ratio increases with the increase of sodium sulfate and castor oil acid, and decreases as phenol increases. When the oil-water ratio is 1 : 3, the optimal distribu- tion coefficient of 40 is obtained. Phenol saturation concentration in castor oil acid is 1.03 mol.L-1 after extraction for 4 times. The equilibrium constant (Kex) at 25℃ is 8.41 and the endothermic enthalpy (AH) is 1.513 kJ.mo1-1. The Gibbs free energy (AG) is -5.277 kJ. tool-1 and the value of AS is calculated to be 22.3 J. mo1-1. K-1.
文摘The wastewater treatment from brassylic acid manufacturing plant using membrane bioreactor (MBR) was studied. The membrane bioreactor consisted of batch-operation biological aeration tank and ultrafiltration evaluation tank. The content of test included the affection of variation operation conditions on ultrafiltration separation, the general characteristics of MBR process, and the difference comparing with the conventional biological treatment. The results are as follows: (1) among the test membrane material, polyether sulphone (PES) membrane is more suitable for the wastewater treatment; (2) when the cutoff molecular weight is among 10000-50000, the higher the cutoff molecular weight, the bigger the water flux is in the test; (3) under the operation pressure, water flux increases accompanying with the increasing of operation pressure; (4) the paper filtered COD concentration has more affection on the water flux than the suspended solid concentration; ( 5) as they volume loading of MBR increases, the accumulation of high molecule organic substance and colloid increases, the membrane,permeate COD concentration and paper filtered COD concentration increase too, meanwhile the water flux reduces; (6) when the sludge retention time of activated sludge of MBR increases, the accumulation of high molecule organic substance and colloid reduces, the membrane permeate (:OD concentration and paper filtered COD concentration reduce too, and the water flux increases; (7) comparing with the conventional biological process, the microbial activity is higher, but the microbial species is less.
文摘The effluent from phenyl acetic acid (PhCH2COOH) production process can betreated with NDA-999 macroporous polymeric adsorbent with about 100% removalefficiency of PhCH2COOK benzyl alcohol (PhCH2OH)and benzaldehyde (PhCHO) aswell as the decrease in Total Organic Carbon (TOC)from 4691mg/l to <300mg/L. 3. 7kgPhCH2COOH and 120kg NaCl will be recovered from per m3 wastewater and theadsorbent can be reused after being regenerated by NaOH aqueous solution andmethanol. Good economic, social and environmental results can be achieved with thismethod.
基金financially supported by the National Natural Science Foundation of China (No. 21277012)the Nature Scientific Research Foundation of Shaanxi Provincial Education Office of China (No. 17JK0864)the Scientific Research Foundation for Ph D of Yan'an University(No. YDBK2018-10)
文摘The hydrometallurgical strategy of extracting Mn from low-grade Mn ores has attracted attention for the production of electrolytic manganese metal(EMM). In this work, the reductive dissolution of low-grade Mn O2 ores using toxic nitrocellulose acidic wastewater(NAW) as a reductant was investigated for the first time. Under the optimized conditions of an Mn O2 ore dosage of 100 g·L-1, an ore particle size of-200 mesh, concentrated H2 SO4-to-NAW volume ratio of 0.12, reaction temperature of 90°C, stirring speed at 160 r·min-1, and a contact time of 120 min, the reductive leaching efficiency of Mn and the total organic carbon(TOC) removal efficiency of NAW reached 97.4% and 98.5%, respectively. The residual TOC of 31.6 mg·L-1 did not adversely affect the preparation of EMM. The current process offers a feasible route for the concurrent realization of the reductive leaching of Mn and the treatment of toxic wastewater via a simple one-step process.
基金TheNationalNaturalScienceFoundationofChina !(No .395 70 10 1)andNSFofJiangsuProvince (No .BK 990 33)
文摘The fungi Phanerochaete chrysosporium (PC) and Saccharomyces cerevisiae Y99 and the native bacterium YZ1 were the three parental strains for construction of hybrid cells through protoplast fusion to degrade terephthalic acid (TPA) wastewater. The results showed that the native bacterium YZ1 protoplasm could integrate with that of PC to form the hybrid cell Fhh and the fungus Y99 protoplasm also could integrate with that of Fhh to form the hybrid cell Fhhh. The protoplasts of YZ1 and Y99 could change the morphology of PC spore and mycelium for two times. The hybrid cell Fhhh got the best growth and degradation abilities in the wastewater. It suggested that the hybrid strains obtained from the inter\|kingdom protoplast fusion of the three parental strains could create potential for the purification of TPA wastewater.
文摘As a natural yellow pigment,lutein is widely used in the human food and forage.A lot of wastewater is generated in this industry.It is urgent to deal with fermentative marigold wstewater for lutein industry.How to process the wastewatwer is more important.Centre on the process of fermentative marigold wstewater,used by polyaluminium chloride to flocculate,active carbon to bleach,then evaporating in the vacuum state and getting lactic acid finally.
文摘The paper provides a critical comparison between mesophilic and thermophilic anaerobic treatment of PTA wastewater through diagnosis of a case study. Aspects covered are bioavailability, biodegradability, microbial population, thermodynamics, kinetics involved and bio-reactor design for PTA wastewater treatment. The results of the case study suggests that one- stage thermophilic anaerobic reactor coupled with coagulation-flocculation pre-treatment unit and an aerobic post treatment unit could be techno-economically viable for PTA wastewater treatment to ensure that the final effluent quality conforms to the international standard. The in-formation emanated from this study could be useful and thought provoking to the professionals and academia in the area of PTA wastewater treatment and can serve as impetus toward the development of research lines in similar problems like the treatment of other petrochemical wastewater such as phenol-con- taining wastewater, benzene/benzoic acid-con- taining wastewater or wastewater from other similar industrial settings.
文摘[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement.
文摘4,4’-diaminostilbene-2, 2’-disulfonic acid (DSD acid) manufacturing wastewater was treated by a macroporous resin in a fixed-bed column. The results showed that this method was suitable for removal of chemical oxygen demands (COD) and color. About 91% COD and 99.5% color removal were obtained under the optimum adsorption conditions, i.e. temperature 20℃, flow rate 1bed volume/hour (BV/hr) and pH1-2. The resin was efficiently regenerated with aqueous sodium hydroxide and water. Furthermore, 65.5% of 4,4’-dinitrostilbene-2, 2’-disulfonic acid (DNS) could be recovered from wastewater for possible recycling to the manufacturing process. The adsorption capacity of resin remained constant during the repetition process of adsorption and desorption.
文摘The biocidal effects of free nitrous acid (FNA) have found applications in multiple units in an urban wastewater system, including sewer networks, wastewater treatment processes, and sludge treatment processes. However, these applications are associated with chemical costs as both nitrite and acid are needed to produce FNA at the required levels. The recent discovery of novel acid-tolerant ammonia oxidizers offers the possibility to produce FNA from domestic wastewater, enabling the development of next-generation FNA-based technologies capable of achieving self-sustaining FNA production. In this study, we focus on the concept of in situ FNA generation facilitated by acid-tolerant ammonia oxidizers and highlight the multiple benefits it creates, after a brief review of the historical development of FNA-based technologies. We will discuss how wastewater systems can be made more energy-efficient and sustainable by leveraging the potential of acid-tolerant ammonia oxidizers.
基金supported by the National Natural Science Foundation of China (No.50379053,50609029,50779068)
文摘Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy(SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides(EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide,and phospholipid fatty acids(PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coeffcient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path(Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.
基金Projects(51604302,51574282)supported by the National Natural Science Foundation of ChinaProject(2016RS2016)supported by the Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),China+1 种基金Project(2018zzts224)supported by the Postgraduate Independent Exploration and Innovation Project of Central South University,ChinaProject(2018TP1002)supported by the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources,China。
文摘The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation test.The results of the saponification reaction test indicated that the optimal conditions for the saponification were stirring rate of 55 r/min,initial temperature of 40℃ and stirring time of 45 min.Meanwhile,the laboratory scale and industrial scale flotation experiments showed that the fatty acid salt synthesized by wastewater achieved an index comparable to fatty acid sodium synthesized by sodium hydroxide.As a consequence,it was feasible to replace sodium hydroxide with the wastewater from zeolite production for fatty acid saponification.The cross-border utilization of waste alkali liquids not only reduced environmental pollution,but also produced excellent economic benefits.
文摘Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status. The parameter, as the objective function for the judgment, is the minimum reactor volume( V _ min ) calculated by Ebis for microorganism required in wastewater treatment. The rationality and the universality of Ebis were demonstrated in the domestic sewage treatment system(DSTS) with the data published in USA and China at first,then Fhhh strain's potential for treating the purified terephthalic acid(PTA) was proved. It suggests that Ebis would be useful and universal for predicating the technique effectiveness in both DSTS and IWTS.