Mining industry has significantly contributed to the prosperity of the nation with economic growth, whereas mining operation has caused Acid Mine Drainage (AMD) with the abandonment of mines. As some researchers sugge...Mining industry has significantly contributed to the prosperity of the nation with economic growth, whereas mining operation has caused Acid Mine Drainage (AMD) with the abandonment of mines. As some researchers suggest, the history of AMD is, generally, affected by the change in not only mining industry but also in social and economic conditions. Thus, historical analysis is an effective way to find the key factors of AMD. In this study, in order to find the key factors of AMD, we examine the history of the United States (U.S.) and South Africa, where their economy had been developed owing to the large-scale mining, based on the findings in the previous studies. The results indicated that the abandoned mines due to the economic depression triggered AMD in the U.S. and South Africa. While the U.S. had progressively adopted anti-AMD methods in terms of prevention, prediction, and remediation (PPR) as a comprehensive approach, especially since the 1970s onwards because of the rise of environmental consciousness as well as strict regulations, South Africa is at the early stage of implementing the regulations following PPR. The public attention should be directed to environmental conservation in addition to the implementation of the regulations in South Africa. The improvement in socio-economic conditions is, additionally, necessary for the rise of environmental consciousness in South Africa in the light of the three pillars of sustainable development: social, economic, and environmental elements.展开更多
To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restrict...To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restriction analysis and phylogenetic analysis,it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage(AMD)ecology.The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed.It provided organic matters that can make Acidiphilium sp.rapidly grow and become the most bacterial species in this niche.Furthermore,Acidithiobacillus ferrooxidans and Leptospirillum sp.are also present in this niche.The amount of Leptospirillum sp.is far more than that of Acidithiobacillus ferrooxidans,which indicates that the concentration of toxic ions is very high.The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover,because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp.depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD,their presence indicates that AMD still flows into the site.And the area is closer to the outfalls of AMD,their biomasses would be more.So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.展开更多
Two acid mine drainage(AMD)samples TS and WK,which were from the Dachang metals-rich mine in Guangxi province,China,were studied using PCR-based cloning approach.A total of 44 operational taxonomic units(OTUs)were obt...Two acid mine drainage(AMD)samples TS and WK,which were from the Dachang metals-rich mine in Guangxi province,China,were studied using PCR-based cloning approach.A total of 44 operational taxonomic units(OTUs)were obtained from the two AMD samples.However,only three OTUs(GXDC-9,GXDC-19 and GXDC-50)detected in sample TS can also be observed in sample WK.Phylogenetic analysis revealed that the bacteria in the two samples fell into four putative divisions,which were Nitrospira,Alphaproteobacteria,Gamaproteobacteria,and Acidobacteria.Organisms of genuses Acidithiobacillus and Leptospirillum,which were in gamaproteobacteria class and Nitrospira family,were dominant in two samples,respectively.In sample TS,which was characterized by low pH,high sulfate,high iron,and high arsenide,two species(Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans)constituted 98.22% of the entire microbial community.Compared with sample TS,the microbial community in sample WK was more diversified according to the observation.Interestedly,the Legionella species,which was rarely observed in the low-pH environment,was detected in sample WK.This work helps us to further understand the diversity of microbial community living in extreme acid mine drainages with unique geochemistry and the tolerance capability of acidophiles to heavy metal.展开更多
The improvement of microbial characterization has increased the comprehension of microbial population and their ability in the microbiological metal dissolution. Bioleaching processes have been expanded to use microor...The improvement of microbial characterization has increased the comprehension of microbial population and their ability in the microbiological metal dissolution. Bioleaching processes have been expanded to use microorganisms for the recovery of metals from ores and wastes. This study introduces Palca mine tailings pond in Peru which turned into acid mine drainage (AMD). AMD is a source of microbial communities whose microorganisms may support the aqueous extractive metallurgy for metal recovery. Four samples of AMD were collected from different locations and the elemental characterization showed concentrations of metals, such as Cu, Zn, Al, Mn, and Fe. The pH of the samples showed variation between 1.9 - 6.8. Twenty-one microorganisms were isolated and selected according the cell morphology. 16s rRNA gene sequences identified five species of which three belong to the bacterial kingdom and two to the Fungi kingdom. Two of the bacterial species were ferrous ion oxidizing bacteria, identified as Acidithiobacillus ferriphilus and Acidithiobacillus ferridurans;and the other one a ferric ion reducing bacteria identified as Acidiphilium acidophilum. The fungi species identified were Rhodotorula sinensis and Exophiala xenobiotica, a filamentous fungus isolated for the first time from an AMD.展开更多
Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in ...Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in waste dump for the prevention of AMD in Indonesia by virtue of low cost and availability of waste rocks for a cover layer. However, the failure of the system caused by the lack of information related to the construction of cover system in mines, which leads to AMD, has been reported recently in Indonesia. In this study, the field investigation was conducted in pit and waste dump in open cast coal mine in Indonesia with the aim of obtaining the information on the construction of a cover layer and backfilling conditions of waste rocks in the waste dump. The rock samples taken in two areas of the mine were analyzed by geochemical analysis and sequential extraction with acids. The results indicated that Net Acid Producing Potential (NAPP) of the rocks in the waste dump down to 100 cm depth in both areas was from 10 to 30 kg H<sub>2</sub>SO<sub>4</sub>/ton, suggesting that Potentially Acid Forming (PAF) was backfilled in a cover layer. The backfill of PAF was contrary to the concept of cover system, which caused the failure of constructing a cover layer. The cause of the failure was likely attributed to the shortage of cover rocks which are classified as Non Acid Forming (NAF) or the failure of proper placement of them by an operational problem in the areas. Moreover, the results of the extraction with acids suggested that the form of iron and sulfur has to be taken into account to discuss the occurrence of AMD.展开更多
Arsenic(As)speciation transformation in acid mine drainage(AMD)is comprehensively affected by biological and abiotic factors,such as microbially mediated Fe/S redox reactions and changes in environmental conditions(pH...Arsenic(As)speciation transformation in acid mine drainage(AMD)is comprehensively affected by biological and abiotic factors,such as microbially mediated Fe/S redox reactions and changes in environmental conditions(pH and oxidation-reduction potential).However,their combined impacts on arsenic speciation transformation remain poorly studied.Therefore,we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions.The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture,pH 2.0,2.5,and 3.0 are more conducive to the formation of jarosites and ferric arsenate,which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation.The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure,further infuencing the biodissolution of pyrite and the release and oxidation process of Fe/S.The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe,S,and As in solution is mainly regulated by pH and potential values,which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization.The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation,and this correlation is critically regulated by the pH conditions of the system.展开更多
文摘Mining industry has significantly contributed to the prosperity of the nation with economic growth, whereas mining operation has caused Acid Mine Drainage (AMD) with the abandonment of mines. As some researchers suggest, the history of AMD is, generally, affected by the change in not only mining industry but also in social and economic conditions. Thus, historical analysis is an effective way to find the key factors of AMD. In this study, in order to find the key factors of AMD, we examine the history of the United States (U.S.) and South Africa, where their economy had been developed owing to the large-scale mining, based on the findings in the previous studies. The results indicated that the abandoned mines due to the economic depression triggered AMD in the U.S. and South Africa. While the U.S. had progressively adopted anti-AMD methods in terms of prevention, prediction, and remediation (PPR) as a comprehensive approach, especially since the 1970s onwards because of the rise of environmental consciousness as well as strict regulations, South Africa is at the early stage of implementing the regulations following PPR. The public attention should be directed to environmental conservation in addition to the implementation of the regulations in South Africa. The improvement in socio-economic conditions is, additionally, necessary for the rise of environmental consciousness in South Africa in the light of the three pillars of sustainable development: social, economic, and environmental elements.
基金Project(50621063)supported by the Science Fund for Creative Research Groups of ChinaProject(2004CB619201)supported by the Major State Basic Research Development Program of China
文摘To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restriction analysis and phylogenetic analysis,it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage(AMD)ecology.The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed.It provided organic matters that can make Acidiphilium sp.rapidly grow and become the most bacterial species in this niche.Furthermore,Acidithiobacillus ferrooxidans and Leptospirillum sp.are also present in this niche.The amount of Leptospirillum sp.is far more than that of Acidithiobacillus ferrooxidans,which indicates that the concentration of toxic ions is very high.The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover,because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp.depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD,their presence indicates that AMD still flows into the site.And the area is closer to the outfalls of AMD,their biomasses would be more.So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.
基金Projects(50321402, 30428014, 50621063) supported by the National Natural Science Foundation of ChinaProject(2004CB619201) supported by the National Basic Research Program of China
文摘Two acid mine drainage(AMD)samples TS and WK,which were from the Dachang metals-rich mine in Guangxi province,China,were studied using PCR-based cloning approach.A total of 44 operational taxonomic units(OTUs)were obtained from the two AMD samples.However,only three OTUs(GXDC-9,GXDC-19 and GXDC-50)detected in sample TS can also be observed in sample WK.Phylogenetic analysis revealed that the bacteria in the two samples fell into four putative divisions,which were Nitrospira,Alphaproteobacteria,Gamaproteobacteria,and Acidobacteria.Organisms of genuses Acidithiobacillus and Leptospirillum,which were in gamaproteobacteria class and Nitrospira family,were dominant in two samples,respectively.In sample TS,which was characterized by low pH,high sulfate,high iron,and high arsenide,two species(Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans)constituted 98.22% of the entire microbial community.Compared with sample TS,the microbial community in sample WK was more diversified according to the observation.Interestedly,the Legionella species,which was rarely observed in the low-pH environment,was detected in sample WK.This work helps us to further understand the diversity of microbial community living in extreme acid mine drainages with unique geochemistry and the tolerance capability of acidophiles to heavy metal.
文摘The improvement of microbial characterization has increased the comprehension of microbial population and their ability in the microbiological metal dissolution. Bioleaching processes have been expanded to use microorganisms for the recovery of metals from ores and wastes. This study introduces Palca mine tailings pond in Peru which turned into acid mine drainage (AMD). AMD is a source of microbial communities whose microorganisms may support the aqueous extractive metallurgy for metal recovery. Four samples of AMD were collected from different locations and the elemental characterization showed concentrations of metals, such as Cu, Zn, Al, Mn, and Fe. The pH of the samples showed variation between 1.9 - 6.8. Twenty-one microorganisms were isolated and selected according the cell morphology. 16s rRNA gene sequences identified five species of which three belong to the bacterial kingdom and two to the Fungi kingdom. Two of the bacterial species were ferrous ion oxidizing bacteria, identified as Acidithiobacillus ferriphilus and Acidithiobacillus ferridurans;and the other one a ferric ion reducing bacteria identified as Acidiphilium acidophilum. The fungi species identified were Rhodotorula sinensis and Exophiala xenobiotica, a filamentous fungus isolated for the first time from an AMD.
文摘Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in waste dump for the prevention of AMD in Indonesia by virtue of low cost and availability of waste rocks for a cover layer. However, the failure of the system caused by the lack of information related to the construction of cover system in mines, which leads to AMD, has been reported recently in Indonesia. In this study, the field investigation was conducted in pit and waste dump in open cast coal mine in Indonesia with the aim of obtaining the information on the construction of a cover layer and backfilling conditions of waste rocks in the waste dump. The rock samples taken in two areas of the mine were analyzed by geochemical analysis and sequential extraction with acids. The results indicated that Net Acid Producing Potential (NAPP) of the rocks in the waste dump down to 100 cm depth in both areas was from 10 to 30 kg H<sub>2</sub>SO<sub>4</sub>/ton, suggesting that Potentially Acid Forming (PAF) was backfilled in a cover layer. The backfill of PAF was contrary to the concept of cover system, which caused the failure of constructing a cover layer. The cause of the failure was likely attributed to the shortage of cover rocks which are classified as Non Acid Forming (NAF) or the failure of proper placement of them by an operational problem in the areas. Moreover, the results of the extraction with acids suggested that the form of iron and sulfur has to be taken into account to discuss the occurrence of AMD.
基金supported by the National Natural Science Foundation of China (NSFC) (No.41830318)the Joint Funds of the NSFC-DFG (No.51861135305)。
文摘Arsenic(As)speciation transformation in acid mine drainage(AMD)is comprehensively affected by biological and abiotic factors,such as microbially mediated Fe/S redox reactions and changes in environmental conditions(pH and oxidation-reduction potential).However,their combined impacts on arsenic speciation transformation remain poorly studied.Therefore,we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions.The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture,pH 2.0,2.5,and 3.0 are more conducive to the formation of jarosites and ferric arsenate,which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation.The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure,further infuencing the biodissolution of pyrite and the release and oxidation process of Fe/S.The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe,S,and As in solution is mainly regulated by pH and potential values,which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization.The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation,and this correlation is critically regulated by the pH conditions of the system.