期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Preparation and Evaluation of an Injectable Chitosan-Hyaluronic Acid hydrogel for Peripheral Nerve Regeneration
1
作者 张凌溪 陈亦凡 +10 位作者 徐海星 BAO Yun YAN Xiumei LI Yixuan LI Yiping YIN Yixia WANG Xinyu QIU Tong HUANG Zhijun XU Peihu WANG Xiaobing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1401-1407,共7页
The aim of this study was to obtain the fillers in the lumen of hollow nerve conduits(NCs) to improve the microenvironment of nerve regeneration. A p H-induced injectable chitosan(CS)-hyaluronic acid(HA) hydroge... The aim of this study was to obtain the fillers in the lumen of hollow nerve conduits(NCs) to improve the microenvironment of nerve regeneration. A p H-induced injectable chitosan(CS)-hyaluronic acid(HA) hydrogel for nerve growth factor(NGF) sustained release was developed. Its properties were characterized by gelation time, FT-IR, SEM, in vitro swelling and degradation. Furthermore, the in vitro NGF release profiles and cell biocompatibility were also investigated. The experimental results show that the CS-HA aqueous solution can undergo a rapid gelation 3 minutes after its environmental p H is changed to 7.4. The CSHA hydrogel has interconnected channels with a controllable pore diameter and with a porosity of about 80%. It has a favorable swelling behavior and can be degraded by about 70% within 8 weeks in vitro and is suitable for NGF release. The CS-HA/NGF hydrogel exhibits a lower cytotoxicity and is in favor of the adhesion and proliferation of the BMMSCs cells. It is indicated that the CS-HA/NGF will be a promising candidate for neural tissue engineering. 展开更多
关键词 chitosan hyaluronic acid nerve growth factor injectable hydrogel peripheral nerve regeneration
下载PDF
Salvianolic acid B protects the myelin sheath around injured spinal cord axons 被引量:7
2
作者 Zhe Zhu Lu Ding +2 位作者 Wen-feng Qiu Hong-fu Wu Rui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期487-492,共6页
Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurologi... Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurological function;however,its protective effect on the myelin sheath after spinal cord injury remains poorly understood.Thus,in this study,in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation,and the most effective dose was 20 μg/m L.For in vivo investigation,rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks.The amount of myelin sheath and the number of regenerating axons increased,neurological function recovered,and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats.These results indicate that salvianolic acid B can protect axons and the myelin sheath,and can promote the recovery of neurological function.Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. 展开更多
关键词 nerve regeneration spinal cord injury salvianolic acid B oligodendrocytes myelin sheath neural regeneration
下载PDF
Electrospun and woven silk fibroin/poly(lactic-coglycolic acid) nerve guidance conduits for repairing peripheral nerve injury 被引量:7
3
作者 Ya-ling Wang Xiao-mei Gu +2 位作者 Yan Kong Qi-lin Feng Yu-min Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1635-1642,共8页
We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-... We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application. 展开更多
关键词 nerve regeneration peripheral nerve injury poly(lactic-co-glycolic acid electrospinning silk fibroin biocompatibility nerve guidance conduit weaving
下载PDF
Bilobalide inhibits the expression of aquaporin 1, 4 and glial fibrillary acidic protein in rat brain tissue after permanent focal cerebral ischemia
4
作者 Haiming Qin Fulin Song +4 位作者 Hongguang Han Hong Ou Xingwen Zhai Bin Qin Song You 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第27期2105-2111,共7页
The present results demonstrated that in an adult rat model of permanent middle cerebral artery occlusion (pMCAO), pretreatment with bilobalide reduced brain water content and infarct area, down-regulated aquaporin ... The present results demonstrated that in an adult rat model of permanent middle cerebral artery occlusion (pMCAO), pretreatment with bilobalide reduced brain water content and infarct area, down-regulated aquaporin 1, 4 mRNA expression in brain edema tissue, then inhibited their synthesis in the striatum, in particular at the early stage of ischemia (at 8 hours after pMCAO), inhibited glial fibrillary acidic protein expression, and lightened reactive gliosis. These data sug-gest that bilobalide attenuates brain edema formation due to reduced expression of aquaporins. 展开更多
关键词 bilobalide aquaporin brain edema permanent middle cerebral artery occlusion glial fibrillary acidic protein neural regeneration
下载PDF
Molecular chaperones and hypoxic-ischemic encephalopathy 被引量:16
5
作者 Cong Hua Wei-na Ju +2 位作者 Hang Jin Xin Sun Gang Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期153-160,共8页
Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-isch... Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release,cellular proteolysis,reactive oxygen species generation,nitric oxide synthesis,and inflammation.The molecular and cellular changes in HIE include protein misfolding,aggregation,and destruction of organelles.The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway,the extrinsic Fas receptor pathway,and the endoplasmic reticulum stress-induced pathway.Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century.Hypothermia,xenon gas treatment,the use of melatonin and erythropoietin,and hypoxic-ischemic preconditioning have proven effective in HIE patients.Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes.A large number of molecular chaperones are induced after brain ischemia and hypoxia,among which the heat shock proteins are the most important.Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects.Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations,assisting in the proper folding of newly synthesized polypeptides,regulating the degradation of misfolded proteins,inhibiting the aggregation of proteins,and by controlling the refolding of misfolded proteins.In addition,heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways,including the intrinsic pathway,the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway.Molecular chaperones play a key role in neuroprotection in HIE.In this review,we provide an overview of the mechanisms of HIE and discuss the various treatment strategies.Given their critical role in the disease,molecular chaperones are promising therapeutic targets for HIE. 展开更多
关键词 nerve regeneration hypoxic-ischemic encephalopathy molecular chaperones excitatory amino acid cellular proteolysis oxygen radicals inflammation apoptosis reviews neural regeneration
下载PDF
Neuroprotective effects of electroacupuncture on early- and late-stage spinal cord injury 被引量:11
6
作者 Min-fei Wu Shu-quan Zhang +3 位作者 Jia-bei Liu Ye Li Qing-san Zhu Rui Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1628-1634,共7页
Previous studies have shown that the neurite growth inhibitor Nogo-A can cause secondary neural damage by activating Rho A. In the present study, we hypothesized that electroacupuncture promotes neurological functiona... Previous studies have shown that the neurite growth inhibitor Nogo-A can cause secondary neural damage by activating Rho A. In the present study, we hypothesized that electroacupuncture promotes neurological functional recovery after spinal cord injury by inhibiting Rho A expression. We established a rat model of acute spinal cord injury using a modification of Allen's method. The rats were given electroacupuncture treatment at Dazhui(Du14), Mingmen(Du4), Sanyinjiao(SP6), Huantiao(GB30), Zusanli(ST36) and Kunlun(BL60) acupoints with a sparsedense wave at a frequency of 4 Hz for 30 minutes, once a day, for a total of 7 days. Seven days after injury, the Basso, Beattie and Bresnahan(BBB) locomotor scale and inclined plane test scores were significantly increased, the number of apoptotic cells in the spinal cord tissue was significantly reduced, and Rho A and Nogo-A m RNA and protein expression levels were decreased in rats given electroacupuncture compared with rats not given electroacupuncture. Four weeks after injury, pathological tissue damage in the spinal cord at the site of injury was alleviated, the numbers of glial fibrillary acidic protein- and neurofilament 200-positive fibers were increased, the latencies of somatosensory-evoked and motor-evoked potentials were shortened, and their amplitudes were increased in rats given electroacupuncture. These findings suggest that electroacupuncture treatment reduces neuronal apoptosis and decreases Rho A and Nogo-A m RNA and protein expression at the site of spinal cord injury, thereby promoting tissue repair and neurological functional recovery. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture locomotion Rho A Nogo-A glial fibrillary acidic protein neurofilament 200 neural regeneration
下载PDF
Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier 被引量:8
7
作者 Ying Xing Chun-yan Wen +1 位作者 Song-tao Li Zong-xin Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期617-622,共6页
Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able t... Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain. 展开更多
关键词 nerve regeneration brain injury brain-derived neurotrophic factor liposomes targeting vector transfection hippocampus cortex encapsulation efficiency blood-brain barrier transferrin glial fibrillary acidic protein polyethylene glycol neural regeneration
下载PDF
A novel bioactive nerve conduit for the repair of peripheral nerve injury 被引量:3
8
作者 Bin-bin Li Yi-xia Yin +2 位作者 Qiong-jiao Yan Xin-yu Wang Shi-pu Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期150-155,共6页
The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide(PDLLA)-based... The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide(PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury. 展开更多
关键词 nerve regeneration polylactic acid poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} β-tricalcium phosphate nerve conduit nerve fiber neural regeneration
下载PDF
Altered microRNA expression profiles in a rat model of spina bifida 被引量:1
9
作者 Pan Qin Lin Li +5 位作者 Da Zhang Qiu-liang Liu Xin-rang Chen He-ying Yang Ying-zhong Fan Jia-xiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期502-507,共6页
Micro RNAs(mi RNAs) are dynamically regulated during neurodevelopment,yet few reports have examined their role in spina bifida.In this study,we used an established fetal rat model of spina bifida induced by intragas... Micro RNAs(mi RNAs) are dynamically regulated during neurodevelopment,yet few reports have examined their role in spina bifida.In this study,we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy.Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls.The mi RNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an mi RNA microarray assay.Compared with that in control fetuses,the expression of mi RNA-9,mi RNA-124 a,and mi RNA-138 was significantly decreased(〉 2-fold),whereas the expression of mi RNA-134 was significantly increased(〉 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida.These results were validated using real-time quantitative reverse-transcription polymerase chain reaction.Hierarchical clustering analysis of the microarray data showed that these differentially expressed mi RNAs could distinguish fetuses modeling spina bifida from control fetuses.Our bioinformatics analysis suggested that these differentially expressed mi RNAs were associated with many cytological pathways,including a nervous system development signaling pathway.These findings indicate that further studies are warranted examining the role of mi RNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida.Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. 展开更多
关键词 nerve regeneration spina bifida amniotic fluid all-trans retinoic acid microarray micro RNA reverse transcription-polymerase chain reaction MAPK neural regeneration
下载PDF
Neural differentiation of choroid plexus epithelial cells:role of human traumatic cerebrospinal fluid 被引量:1
10
作者 Elham Hashemi Yousef Sadeghi +6 位作者 Abbas Aliaghaei Afsoun Seddighi Abbas Piryaei Mehdi Eskandarian Broujeni Fatemeh Shaerzadeh Abdollah Amini Ramin Pouriran 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期84-89,共6页
As the key producer of cerebrospinal fluid(CSF),the choroid plexus(CP) provides a unique protective system in the central nervous system.CSF components are not invariable and they can change based on the pathologi... As the key producer of cerebrospinal fluid(CSF),the choroid plexus(CP) provides a unique protective system in the central nervous system.CSF components are not invariable and they can change based on the pathological conditions of the central nervous system.The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells.CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF.Alterations in m RNA expression of Nestin and microtubule-associated protein(MAP2),as the specific markers of neurogenesis,and astrocyte marker glial fibrillary acidic protein(GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR.The data revealed that treatment with CSF(non-traumatic and traumatic) led to increase in m RNA expression levels of MAP2 and GFAP.Moreover,the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF,while treatment with traumatic CSF significantly increased its m RNA level compared to the cells cultured only in DMEM/F12 as control.It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions. 展开更多
关键词 nerve regeneration choroid plexus cerebrospinal fluid stem cells Nestin microtubule-associated protein 2 glial fibrillary acidic protein neurogenesis central nervous system neural regeneration
下载PDF
Neuroprotective effects of tetrandrine against vascular dementia 被引量:14
11
作者 Yan-ling Lv Ze-zhi Wu +5 位作者 Li-xue Chen Bai-xue Wu Lian-lian Chen Guang-cheng Qin Bei Gui Ji-ying Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期454-459,共6页
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S.Moore,and has specific therapeutic effects in ischemic cerebrovascular disease.Its use in vascular dementia has not been studi... Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S.Moore,and has specific therapeutic effects in ischemic cerebrovascular disease.Its use in vascular dementia has not been studied fully.Here,we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia.Eight weeks after model establishment,rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks.Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials,and spent less time swimming in the target quadrant in probe trials,than sham-operated rats.However,rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats.Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage,and more living cells,in the hippocampus of rats treated with tetrandrine than in untreated model rats.Western blot assay showed that interleukin-1β expression,and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472,were lower in model rats that received tetrandrine than in those that did not.The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression,N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472,and neuronal necrosis. 展开更多
关键词 nerve regeneration tetrandrine ischemic cerebrovascular disease vascular dementia N-methyl-D-aspartic acid receptor 2B N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472 interleukin-1β neuronal necrosis neural regeneration
下载PDF
Effects of Scutellaria baicalensis on neurogenesis in the hippocampal dentate gyrus and on spatial memory of adult rats
12
作者 Sun-Hwa Lee Byung-soo Ahn +7 位作者 Bong-soo Lim Seong-Kyu Kim Sam-Ki Kim Dae-Il Lee Sung-Rae Cho Deok-Gon Kim Jae-Bok Han Byung-Il Min 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第27期2085-2093,共9页
We investigated the effects of ethanol extracted Scutellaria baicalensis(EESB) on spatial memory function and neurogenesis in the hippocampal dentate gyrus.Adult Sprague-Dawley rats were orally administered 50,100,o... We investigated the effects of ethanol extracted Scutellaria baicalensis(EESB) on spatial memory function and neurogenesis in the hippocampal dentate gyrus.Adult Sprague-Dawley rats were orally administered 50,100,or 200 mg/kg of EESB for 6 successive days.The radial-arm maze test showed that 200 mg/kg of EESB improved the spatial memory of adult rats.Confocal microscopy results showed that 100 mg/kg of EESB increased the number of bromodeoxyuridine(BrdU)-and neuron-specific nuclear protein-positive cells in the granular cell layer,and that 100 and 200 mg/kg of EESB increased the number of BrdU-/neuron-specific nuclear protein-positive cells in the sub-granular zone.200 mg/kg of EESB increased the number of BrdU-/glial fibrillary acid protein-positive cells in the subgranular zone.These findings indicate that EESB can effectively promote neurogenesis in the hippocampal dentate gyrus and improve spatial memory function. 展开更多
关键词 Scutellaria baicalensis neurogenesis dentate gyrus hippocampus bromodeoxyuridine neuron-specific nuclear protein glial fibrillary acidic protein neural regeneration
下载PDF
Endogenous neural progenitor cells in the repair of the injured spinal cord
13
作者 Yilin Mao Tara Nguyen +1 位作者 Theresa Sutherland Catherine Anne Gorrie 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第7期1075-1076,共2页
Stem cell treatments,and in particular,stem cell transplants have been identified as potential therapeutic strategies for a range of neurodegenerative and acquired conditions of the central nervous system(CNS).Stem ... Stem cell treatments,and in particular,stem cell transplants have been identified as potential therapeutic strategies for a range of neurodegenerative and acquired conditions of the central nervous system(CNS).Stem cell transplants are seen as a way of replacing lost neurons,or providing a cellular environment that is more permissible for axon and cell regeneration. 展开更多
关键词 progenitor repair injured regeneration alternate providing neuronal fibrillary glial acidic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部