期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Genetic improvement of legume roots for adaption to acid soils
1
作者 Xinxin Li Xinghua Zhang +1 位作者 Qingsong Zhao Hong Liao 《The Crop Journal》 SCIE CSCD 2023年第4期1022-1033,共12页
Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often co... Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often coexists with phosphorus(P) deficiency and aluminum(Al) toxicity,a combination that severely impedes crop growth and yield across wide areas.As roots explore soil for the nutrients and water required for plant growth and development,they also sense and respond to below-ground stresses.Within the terrestrial context of widespread P deficiency and Al toxicity pressures,plants,particularly roots,have evolved a variety of mechanisms for adapting to these stresses.As legumes,soybean(Glycine max) plants may acquire nitrogen(N) through symbiotic nitrogen fixation(SNF),an adaptation that can be useful for mitigating excessive N fertilizer use,either directly as leguminous crop participants in rotation and intercropping systems,or secondarily as green manure cover crops.In this review,we investigate legumes,especially soybean,for recent advances in our understanding of root-based mechanisms linked with root architecture modification,exudation and symbiosis,together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils.We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions. 展开更多
关键词 acid soils Phosphorus deficiency Aluminum toxicity Genetic improvement SOYBEAN
下载PDF
Differential Expression of Iron Deficiency Responsive Rice Genes under Low Phosphorus and Iron Toxicity Conditions and Association of OsIRO3 with Yield in Acidic Soils 被引量:1
2
作者 Ernieca Lyngdoh NONGBRI Sudip DAS +3 位作者 Karma Landup BHUTIA Aleimo G.MOMIN Mayank RAI Wricha TYAGI 《Rice science》 SCIE CSCD 2023年第1期58-69,共12页
With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expr... With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expression under high Fe and low phosphorus(P) conditions,and sequence polymorphism.Genotypes Sahbhagi Dhan,Chakhao Poirieton and Shasharang were high yielders with no bronzing symptom visible under Fe toxic field conditions,and BAM350 and BAM811 were low yielders but did not show bronzing symptoms.Hydroponic screening revealed that the number of crown roots and root length can be traits for consideration for identifying Fe toxicity tolerance in rice genotypes.Fe contents in rice roots and shoots of a high-yielding genotype KMR3 showing leaf bronzing were significantly high.In response to 24 h high Fe stress,the expression levels of OsNAS3 were up-regulated in all genotypes except KMR3.In response to 48 h high Fe stress,the expression levels of OsNAS1 were3-fold higher in tolerant Shasharang,whereas in KMR3,it was significantly down-regulated.Even in response to 7 d excess Fe stress,the transcript abundances of OsIRO2 and OsNAS3 were contrasting in genotypes Shasharang and KMR3.This suggested that the reported Fe deficiency genes had a role in Fe toxicity and that in genotype KMR3 under excess Fe stress,there was disruption of metal homeostasis.Under the 48 h low P conditions,OsIRO2 and OsYSL16 were significantly up-regulated in Fe tolerant genotype Shasharang and in low P tolerant genotype Chakhao Poirieton,respectively.In silico sequence analysis across 3 024 rice genotypes revealed polymorphism for 4 genes.Sequencing across OsIRO3and OsNAS3 revealed nucleotide polymorphism between tolerant and susceptible genotypes for Fe toxicity.Non-synonymous single nucleotide polymorphisms and insertion/deletions(InDels) differing in tolerant and susceptible genotypes were identified.A marker targeting 25-bp InDel in OsIRO3,when run on a diverse panel of 43 rice genotypes and a biparental population,was associated with superior performance for yield under acidic lowland field conditions.This study highlights the potential of one of the vital genes involved in Fe homeostasis as a genic target for improving rice yield in acidic soils. 展开更多
关键词 acidic soil low phosphorus iron toxicity OsNAS1 OsIRO3 RICE YIELD
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
3
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline Water Soil acidity Soil Alkalinity
下载PDF
Calcium-Magnesium Ca/Mg Ratios and Their Agronomic Implications for the Optimization of Phosphate Fertilization in Rainfed Rice Farming on Acidic Ferralsol in the Forest Zone of Ivory Coast
4
作者 Fernand G. Yao Brahima Kone +7 位作者 Franck M. L. Bahan Kouadio Amani Jean L. Essehi Mamadou B. Ouattara Konan E. B. Dibi Brou Kouame François Lompo Albert Yao-Kouame 《Open Journal of Soil Science》 2024年第1期81-96,共16页
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph... This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire. 展开更多
关键词 Soil acidity Ca/Mg Ratios Phosphate Fertilization Rice Growing Ivory Coast
下载PDF
Growth and mineral nutrient analysis of teak (Tectona grandis) grown on acidic soils in south China 被引量:4
5
作者 Zaizhi Zhou Shichao Liu +2 位作者 Kunnan Liang Huaming Ma Guihua Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第3期503-511,共9页
Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic t... Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5-8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or A1, Ca with Mg, and Fe with AI provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study. 展开更多
关键词 acid soils DRIS diagnosis and norm Mineral nutrient relationship Plant mineral nutrition Soil properties TEAK
下载PDF
Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province,China 被引量:19
6
作者 LIU Zhan-jun ZHOU Wei +5 位作者 SHEN Jian-bo LI Shu-tian LIANG Guo-qing WANG Xiu-bin SUN Jing-wen AI Chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期177-186,共10页
Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regi... Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were significantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deficient in AK and ASi. The results suggest that soil AK and ASi deficiencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions. 展开更多
关键词 soil quality assessment acid sulfate paddy soil soil quality index different productivity
下载PDF
Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils 被引量:5
7
作者 Renyong Shi Jiuyu Li +4 位作者 Jun Jiang Khalid Mehmood Yuan Liu Renkou Xu Wei Qian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期294-302,共9页
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d... The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. 展开更多
关键词 Biomass ashes Raw materials Element composition Chemical properties Amelioration of acidic soils Available heavy metals
原文传递
Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals 被引量:1
8
作者 Weiqi Luo Yanping Ji +6 位作者 Lu Qu Zhi Dang Yingying Xie Chengfang Yang Xueqin Tao Jianmin Zhou Guining Lu 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第3期69-78,共10页
In this study, effects of water conditions (flooded, wet, or dry) and eggshell dosages (0, 0.1, 1.0, and 10.0 g/kg soil, respectively) on pH variation, content of unavailable state of heavy metals, form of heavy m... In this study, effects of water conditions (flooded, wet, or dry) and eggshell dosages (0, 0.1, 1.0, and 10.0 g/kg soil, respectively) on pH variation, content of unavailable state of heavy metals, form of heavy metals, and available nutritious element calcium (Ca) in acid soils contaminated with heavy metals were investigated, respectively. The soil samples were continuously cultivated indoors and analyzed by toxicity characteristic leaching procedure and community bureau of reference (BCR) sequential extraction procedure. The results showed that the addition of eggshell could effectively improve the pH of acid soil and increase it to neutral level. Moreover, the contents of unavailable state of heavy metals Cu, Zn, and Cd increased significantly. Furthermore, when the soil was cultivated under the flooded condition with 1.0 g/kg eggshell, the unavailable state ofCu, Zn, and Cd increased the most, and these heavy metals were transformed into residual state. On the other hand, the amount of available state of Ca increased to 432.19 from 73.34 mg/kg with the addition of 1.0 g/kg eggshell, which indicated that the addition of eggshell dramatically improved the available state of Ca. Therefore, eggshell could ameliorate the soil environment as it led to the decrease of available heavy metals and improvement of fertilization effectively. In a word, this study indicates that the addition of eggshell would be a new potential method for remediation of acid field soils contaminated with heavy metals. 展开更多
关键词 Heavy metals Eggshell acid soil remediation BCR sequential extraction
原文传递
Acidification and change of physicochemical properties of Mt.Heng soils in last 34 years
9
作者 Dai Zhaohua Liu Yunxia +1 位作者 Wang XingJun Zhao Dianwu(Research Center for Eco Environrnenlal Sciences-Chinese Academy of Sciences . Beijing 100085 . China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1995年第3期346-351,共6页
AcidificationandchangeofphysicochemicalpropertiesofMt.Hengsoilsinlast34yearsDaiZhaohua;LiuYunxia;WangXingJun... AcidificationandchangeofphysicochemicalpropertiesofMt.Hengsoilsinlast34yearsDaiZhaohua;LiuYunxia;WangXingJun;ZhaoDianwu(Resea... 展开更多
关键词 acidification: soil: acid rain acid fog.
下载PDF
Cultivar and Soil Fertilizer Treatment Affect Seed Production of Sweet Yellow Yam (<i>Dioscorea dumetorum</i>) on Highly Acidic Soils of the Western Highlands Region of Cameroon
10
作者 Somo Toukam Gabriel Mahbou Godswill Ntsomboh-Ntsefong +2 位作者 Tiokeng Marie Noel Ateko Benoit Nono Emmanuel Youmbi 《American Journal of Plant Sciences》 2021年第9期1387-1409,共23页
The popularization of <i>Dioscorea dumetorum</i> (Dioscoreaceae), a nutritious yam species is still marginal due to constraints such as the low interest of research, poor cultural practices, insufficient a... The popularization of <i>Dioscorea dumetorum</i> (Dioscoreaceae), a nutritious yam species is still marginal due to constraints such as the low interest of research, poor cultural practices, insufficient and expensive seeds, pests, and diseases. The latter pushes producers to use about 50% of their harvest as seed for the next planting season. The lack of a specific fertilizer formulation for yam production on the oxysols of Cameroon is another constraint. This study was aimed at enhancing the availability of quality seeds through the characterization of five yam accessions. One experiment was performed to determine the effect of cultivar and origin of tuber sets on their germination rate. The <span>second concerned the evaluation of cultivars and soil treatment effects on ag</span>ronomic parameters of yam seedlings. Yam cultivars were subjected to nine fertilizer formulations as follows: T0: no fertilizer;T1: mycorrhizal fungi (MF) + 150 g manure + peanut waste;T2: 25 g chemical fertilizer (20.10.10);T3: MF + peanut waste;T4: 16 g chemical fertilizer (12.6.20);T5: 25 g (20.10.10) +100 g CaO + 150 g manure;T6: 100 g CaO + 150 g manure;T7: 20 g tropicote + 2 g DAP (Diammonium phosphate, a reference starter fertilizer coded N18P46) + 100 g CaO + 150 g manure;and T8: mycorrhiza. These treatments were tested in a factorial design. Results show that Ibo sweet 3 and Mabondji sweet white 1 yam accessions were less affected by anthracnose disease on the aerial parts. Guzang 1 showed the best germination rate and yield, making it appropriate for cultivation in the region. Soil treatments, T2, T5, T7 and T8 significantly increased the yield of yam cultivars. Mycorrhiza treatment alone gave a better response to seed weight, indicating the interest of this biofertilizer as a solution for good seedling production. These fertilizer treatments can be recommended to farmers for more seed production with optimum seed weight (300 g). 展开更多
关键词 Dioscorea dumetorum Mini Set Yam Seed Production MYCORRHIZA Fertilizer Soil acidity
下载PDF
Effects of Microbial Fertilizers in Improving Acidic Tobacco-planting Soil and Tobacco Leaf Quality
11
作者 Xia NI Shungang SHEN +13 位作者 Xianyi ZENG Dewen LI Yeming FU Min CHEN Chaokai YU Libing QI Ying-guo RUAN Changchong ZI Haohan GONG Guangjun HU Mengsheng ZHANG Xu ZHANG Shu PENG Hongbing LI 《Agricultural Biotechnology》 CAS 2023年第2期67-72,共6页
[Objectives]This study was conducted to improve acidic soil and enhance the quality of tobacco leaves.[Methods]The effects of different microbial fertilizers on improving acidic tobacco-planting soil and tobacco leaf ... [Objectives]This study was conducted to improve acidic soil and enhance the quality of tobacco leaves.[Methods]The effects of different microbial fertilizers on improving acidic tobacco-planting soil and tobacco leaf quality were investigated through plot experiments.[Results]The application of microbial fertilizers could improve the pH value of acidic soil,and composite microbial agent A showed the best application effect.The application of bio-organic fertilizer was beneficial to improving the contents of available phosphorus and available boron in acidic soil.The application of composite microbial agent A was beneficial to improving the contents of available phosphorus and available potassium in acidic soil,and could promote the growth of tobacco plants and improve the economic traits of flue-cured tobacco and the coordination of chemical components in tobacco leaves.The application of composite microbial agent B led to a downward trend in the content of available boron in acidic soil.The application of composite microbial agent B could promote the absorption of nutrients by tobacco plants,and improve their disease resistance and the quality of tobacco leaves.Due to the differences in functional microorganisms contained,the application effects of different microbial fertilizers in improving acidic tobacco-planting soil and improving tobacco leaf quality varied.Overall,the application of microbial fertilizers could increase soil pH,activate soil nutrients,promote tobacco growth,enhance disease resistance,increase tobacco output value,and improve tobacco quality.Microbial fertilizers have good application prospects in improving acidic soil and improving tobacco quality.[Conclusions]The application of microbial fertilizers to improve acidic tobacco-planting soil can ensure the normal growth and development of tobacco plants and the improvement of tobacco leaf quality,achieving high-quality and sustainable development of Zhaotong tobacco. 展开更多
关键词 Microbial fertilizer Flue-cured tobacco acidic soil Tobacco quality
下载PDF
Influence of Soil pH, Organic Matter, and Clay Content on Environmentally Available Lead in Soils: A Case Study in Muncie, Indiana, USA
12
作者 Abdulgadir Elnajdi Adam Berland +1 位作者 Jess Haeft Carolyn Dowling 《Open Journal of Soil Science》 2023年第10期414-430,共17页
Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused ... Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused on the influence of soil pH, organic matter, and clay content on extractable lead amounts. Sixty-four soil samples from Muncie, Indiana, were analyzed, revealing that the examined factors accounted for 21.71% of the Pb mg/Kg-dry variable variance (p −0.4, p < 0.001), with XRD and FTIR analyses confirming the binding affinity of clay minerals with lead. In contrast, no significant relationships were found between Pb concentrations and soil pH (r = 0.07;p = 0.59) or organic matter content (r = 0.12;p = 0.34). Elucidating the interactions between lead, clay minerals, and other soil constituents is crucial for addressing lead-contaminated soils and reducing environmental and health impacts. 展开更多
关键词 Soil acidity/Alkalinity Lead Leaching Lead Solubility Health Risks Lead Mobility
下载PDF
Effects of Calcium and Magnesium on Phosphorus Availability in Ferralsols and Rice Production in Forest Zones of Côte d’Ivoire
13
作者 Guy Fernand Yao Brahima Kone +5 位作者 Kouadio Amani Franck Michaël Lemonou Bahan Jean Lopez Essehi Brou Kouame François Lompo Albert Yao-Kouame 《Journal of Agricultural Chemistry and Environment》 2024年第1期33-53,共21页
Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of ... Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha<sup>-1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha<sup>-1</sup>) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha<sup>-1</sup>) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg<sup>-1</sup> after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization. 展开更多
关键词 Soil acidity Native and Exogenous Phosphorus Free Iron Ca/Mg Balances Rice Growing Côte d’Ivoire
下载PDF
Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution 被引量:13
14
作者 Zhiyong LIU Xiaogang LI +2 位作者 Yingrui ZHANG Cuiwei DU Guoli ZHA 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第1期58-64,共7页
Stress corrosion cracking (SCC) of X70 pipeline steel in simulated solution of the acidic soil in Yingtan in China was investigated using slow strain rate test (SSRT), SEM and potentiodynamic polarization techniqu... Stress corrosion cracking (SCC) of X70 pipeline steel in simulated solution of the acidic soil in Yingtan in China was investigated using slow strain rate test (SSRT), SEM and potentiodynamic polarization technique. Experiment results indicate that X70 steel is highly susceptible to SCC as applied potential reduces, which is manifested in loss of toughness and brittle fracture. Constaat polarization current can detect the occurrence of SCC. The lower the polarization current is the sooner stress corrosion cracking occurs. The SCC mechanisms are different at varying potentials. When potential is higher than open circuit potential, anodic process controls SCC, whereas when potential is far lower than open circuit potential, cathodic process controls SCC, and between these two potential regions, a combined electrochemical process controls the SCC. Stress or strain has a synergistic effect with electrochemical reactions to accelerate the cathodic hydrogen evolution process, which makes the X70 pipeline steel to be more susceptible to SCC. 展开更多
关键词 X70 steel SCC Electrochemical process acidic soil
下载PDF
Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment 被引量:11
15
作者 Zhiyong Liu Guoli Zhai Xiaogang Li Cuiwei Du 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期707-713,共7页
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures i... In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential. 展开更多
关键词 X70 steel heat affected zone heat treatment stress corrosion cracking (SCC) acidic soil environment
下载PDF
Amelioration of acidic soil using fy Ash for Mine Revegetation in PostMining Land 被引量:1
16
作者 Akihiro Hamanaka Takashi Sasaoka +1 位作者 Hideki Shimada Shinji Matsumoto 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期201-206,共6页
This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result... This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil. 展开更多
关键词 acid Soil Coal Ash Metal Accumulation Plant Growth
下载PDF
Study on Humic Acids of the Soil Applied with Corn Stalk by Spectroscopy Measurements
17
作者 WU Jing-gui WANG Ming-hui JIANG Yi-mei XU Yan 《Agricultural Sciences in China》 CAS CSCD 2005年第9期685-692,共8页
Spectroscopy measurements (Fourier transform infrared differential spectroscopy, Carbon-13 nuclear magnetic resonance spectrometry, Matrix-assisted laser resorption/ionization-time of flight mass spectrometry) were ... Spectroscopy measurements (Fourier transform infrared differential spectroscopy, Carbon-13 nuclear magnetic resonance spectrometry, Matrix-assisted laser resorption/ionization-time of flight mass spectrometry) were performed to study the humic acids of the soil applied with corn stalk. The results showed that after incorporation of corn stalks into the soil, the soil humic acid (HA) changed significantly in different stages. During first 60 days, new HAs were formed by polymerization and seems to be similar to that of initial HAs from composting corn stalk, some little molecular organic matters also reacted with soil HAs and turned into parts of soil HAs. After 60 days of the corn stalk residue incorporation, new HAs were formed by polymerization of decomposed lignin molecules, some methylenes transformed into methyls and methoxyls since the 90th day. Application of corn stalk led to the increase of aliphatic components in soil HAs, the decrease in aromatic components of soil HAs and the suppression in oxidation degree of soil HAs. The average molecular weight of soil HAs also declined because of application of corn stalk. 展开更多
关键词 Corn stalk Soil humic acid Spectroscopy measurement
下载PDF
Effects of Combined Application of Reduced Fertilizer and Biogas Manure on Summer Maize Growth and Acidic Soil Improvement
18
作者 Yao SUN Yan WANG Jie DONG 《Agricultural Biotechnology》 CAS 2018年第3期142-145,共4页
[Objectives] A field experiment was carried out with biogas manure replacing partial chemical fertilizer to discuss the effects on growth and development of summer maize and soil environment,so as to provide theoretic... [Objectives] A field experiment was carried out with biogas manure replacing partial chemical fertilizer to discuss the effects on growth and development of summer maize and soil environment,so as to provide theoretical basis for efficient utilization and zero growth of chemical fertilizer. [Methods]The summer maize field experiment was carried out in Muping District,Yantai City,with conventional fertilization as control,and sole application of biogas manure,biogas manure + 80% chemical fertilizer and biogas manure + 60% chemical fertilizer as three treatments. Growth indices,yield and yield components of summer maize and soil nutrient utilization status were determined. [Results] On the basis of reduced fertilizer application,the application of biogas manure could significantly promote growth of summer maize,and its plant height,stem diameter,ear position and dry weight per plant significantly increased compared with the CK. Remarkable yield increasing effect was obtained on summer maize,and among the various treatments,treatment BM + CF80 had the highest yield,which was 19. 91% higher than the CK. Furthermore,the combined application of biogas manure and chemical fertilizer not only could improve soil acidity( soil pH was improved by 0. 12 unit),but also could improve soil rapidly available potassium content and reduce soil alkali-hydrolyzable nitrogen content. [Conclusions]Comprehensively,combined application of biogas manure and 80% of chemical fertilizer is the best for growth and development of summer maize and improvement of soil character. 展开更多
关键词 Biogas manure Summer maize Growth characteristics acidic soil
下载PDF
Comparison of Highly-Weathered Acid Soil CEC Determined by NH<sub>4</sub>OAc (pH = 7.0) Exchange Method and BaCl<sub>2</sub>-MgSO<sub>4</sub>Forced-Exchange Method
19
作者 Xiangzheng Kong Decheng Li +1 位作者 Xiaodong Song Ganlin Zhang 《Agricultural Sciences》 2021年第9期917-927,共11页
Cation exchange capacity (CEC) is one of the most important properties of soils. The NH<sub>4</sub>OAc (pH = 7.0) exchange method is usually recommended to determine CEC (CEC<sub>1</sub>) of al... Cation exchange capacity (CEC) is one of the most important properties of soils. The NH<sub>4</sub>OAc (pH = 7.0) exchange method is usually recommended to determine CEC (CEC<sub>1</sub>) of all soils with different pH values, particularly for studies on soil taxonomy. But comparatively the BaCl<sub>2</sub>-MgSO<sub>4</sub> forced-exchange method is more authentic in determining CEC (CEC<sub>2</sub>) of tropical and subtropical highly-weathered acid soils. But so far little is known about the difference between CEC<sub>1</sub> and CEC<sub>2</sub>. In this study, the physiochemical data of 114 acid B horizon soils from 112 soil series of tropical and subtropical China were used, CEC<sub>1</sub> and CEC<sub>2</sub> were determined and compared, the influencing factors were analyzed for the difference between CEC<sub>1</sub> and CEC<sub>2</sub>, and then a regression model was established between CEC<sub>1</sub> and CEC<sub>2</sub>. The results showed that CEC<sub>2</sub> was significantly lower than CEC<sub>1</sub> (p < 0.01), CEC<sub>2</sub> was 14.76% - 63.31% with a mean of 36.32% of CEC<sub>1</sub>. In view of the contribution to CEC from other properties, CEC<sub>2</sub> was mainly determined by pH (45.92%), followed by silt (21.05%), free Fe<sub>2</sub>O<sub>3</sub> (17.35%) and clay contents (12.76%), CEC<sub>1</sub> was mainly decided by free Fe<sub>2</sub>O<sub>3</sub> content (40.38%), followed by pH (28.39%) and silt content (27.29%;and the difference between CEC<sub>1</sub> and CEC<sub>2</sub> was mainly affected by free Fe<sub>2</sub>O<sub>3</sub> (50.92%), followed by silt content (26.46%) and pH (21.80%). The acceptable optimal regression model between CEC<sub>2</sub> and CEC<sub>1</sub> was established as CEC<sub>2</sub> = 2.3114 × CEC<sub>1</sub><sup>1.1496</sup> (R<sup>2</sup> = 0.410, P < 0.001, RMSE = 0.15). For the studies on soil taxonomy, the BaCl<sub>2</sub>-MgSO<sub>4</sub> forced-exchange method is recommended in determining CEC of the highly-weathered acid soils in the tropical and subtropical regions. 展开更多
关键词 acid Soil CEC Determination NH4OAc (pH = 7.0) Exchange Method BaCl2-MgSO4 Forced-Exchange Method
下载PDF
Reduction of N2O emissions by DMPP depends on the interactions of nitrogen sources(digestate vs. urea) with soil properties
20
作者 LI Hao-ruo SONG Xiao-tong +1 位作者 Lars RBAKKEN JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期251-264,共14页
The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole p... The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction. 展开更多
关键词 nitrous oxide DIGESTATE UREA nitrification inhibitors DMPP alkaline soils acid soils
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部