The microbial treatment of wastewater containing a high concentration of chromium from cold rolling mills was carried out as a pilot study. The pilot-scale equipment, technological process and results are described in...The microbial treatment of wastewater containing a high concentration of chromium from cold rolling mills was carried out as a pilot study. The pilot-scale equipment, technological process and results are described in this paper. Two kinds of wastewater with a high concentration of chromium were tested : one from a color coating line ; the other from a silicon steel line. The removal effect of Cr^6+ , T-Cr and chemical oxygen demand (COD) in wastewater was studied. The results showed that this microbial treatment technology could be used to treat the above two kinds of chromium-containing wastewater. The average concentrations of Cr^6+ in the color coating line effluent and the silicon steel line effluent were 0.02 mg/L and 0.04 mg/L respectively, and the average concentrations of T-Cr in the effluents were 0.71 mg/L and 0.74 mg/L respectively. Both were lower than the Sewage Discharge Standard (Cr^6+ 〈 0.5 mg/L,T-Cr 〈 1.5 mg/L). Furthermore, up to 60% of the COD was removed from chromate wastewater containing a high concentration COD ( 〉 3 g/L). The removal rate of COD was lower than 25% for chromate wastewater containing a low concentration COD ( 〈 3 g/L). Adding a flocculating agent was one of the effective ways of improving the COD removal rate from chromium-containing wastewater.展开更多
Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained s...Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge.展开更多
Two new integrated processes, gas-energy-management (GEM)—electrochemical catalytic oxidation (ECO)—membrane bioreactor (MBR) and ultrafiltration (UF)—ECO—MBR, in industrial-scale test for treating cold-ro...Two new integrated processes, gas-energy-management (GEM)—electrochemical catalytic oxidation (ECO)—membrane bioreactor (MBR) and ultrafiltration (UF)—ECO—MBR, in industrial-scale test for treating cold-rolling mill emulsion wastewater with water quantity of 200 L/h to 3000 L/h were studied. The former was put forward firstly and the latter was applied initially in this field. The operation conditions and mechanisms of each module in the integrated processes were analyzed and the influences of operational parameters of two processes on chemical oxygen demand (CODCr) removal efficiency were comparatively investigated. The test results showed that the ultimate water quality from the two processes after treatment could meet the requirement for reuse.However, the quality of effluent treated by GEM—ECO—MBR was more stable than that of UF—ECO—MBR.展开更多
文摘The microbial treatment of wastewater containing a high concentration of chromium from cold rolling mills was carried out as a pilot study. The pilot-scale equipment, technological process and results are described in this paper. Two kinds of wastewater with a high concentration of chromium were tested : one from a color coating line ; the other from a silicon steel line. The removal effect of Cr^6+ , T-Cr and chemical oxygen demand (COD) in wastewater was studied. The results showed that this microbial treatment technology could be used to treat the above two kinds of chromium-containing wastewater. The average concentrations of Cr^6+ in the color coating line effluent and the silicon steel line effluent were 0.02 mg/L and 0.04 mg/L respectively, and the average concentrations of T-Cr in the effluents were 0.71 mg/L and 0.74 mg/L respectively. Both were lower than the Sewage Discharge Standard (Cr^6+ 〈 0.5 mg/L,T-Cr 〈 1.5 mg/L). Furthermore, up to 60% of the COD was removed from chromate wastewater containing a high concentration COD ( 〉 3 g/L). The removal rate of COD was lower than 25% for chromate wastewater containing a low concentration COD ( 〈 3 g/L). Adding a flocculating agent was one of the effective ways of improving the COD removal rate from chromium-containing wastewater.
文摘Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge.
基金Item Sponsored by Preferred Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Human Resources and Social Security of China ([2007]170)
文摘Two new integrated processes, gas-energy-management (GEM)—electrochemical catalytic oxidation (ECO)—membrane bioreactor (MBR) and ultrafiltration (UF)—ECO—MBR, in industrial-scale test for treating cold-rolling mill emulsion wastewater with water quantity of 200 L/h to 3000 L/h were studied. The former was put forward firstly and the latter was applied initially in this field. The operation conditions and mechanisms of each module in the integrated processes were analyzed and the influences of operational parameters of two processes on chemical oxygen demand (CODCr) removal efficiency were comparatively investigated. The test results showed that the ultimate water quality from the two processes after treatment could meet the requirement for reuse.However, the quality of effluent treated by GEM—ECO—MBR was more stable than that of UF—ECO—MBR.