Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range...Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.展开更多
The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,...The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,sulphuric acid concentration,and temperature,especially by microwave power.The results obtained from the experiments of orthogonal arrays showed that the optimum conditions of sulphuric acid concentration,reaction time,microwave power,and temperature were 25 vol.%,1.5 h,600 W,and 90°C,respectively.Under the optimal conditions,the nickel recovery could reach approximately 90.8%,which was higher than that obtained by conventional water bath heating.Kinetic experiments showed that the leaching of nickel in a sulphuric acid medium was controlled by chemical reaction occurring on the surface of laterite ore.The apparent activation energy was 38.9 kJ/mol.Microwave heating technology is efficient,clean,and easy to control and facilitate continuous processing of materials.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities of China (No. N120302006)the China Postdoctoral Science Foundation(No. 2013M530939)the Key Programs on Social Development of Liaoning Province, China (No. 2012201011)
文摘Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.
文摘The recovery of nickel from laterite ore with sulphuric acid under the effect of microwave irradiation was studied.The experimental results indicated that the extraction rate of nickel was influenced by reaction time,sulphuric acid concentration,and temperature,especially by microwave power.The results obtained from the experiments of orthogonal arrays showed that the optimum conditions of sulphuric acid concentration,reaction time,microwave power,and temperature were 25 vol.%,1.5 h,600 W,and 90°C,respectively.Under the optimal conditions,the nickel recovery could reach approximately 90.8%,which was higher than that obtained by conventional water bath heating.Kinetic experiments showed that the leaching of nickel in a sulphuric acid medium was controlled by chemical reaction occurring on the surface of laterite ore.The apparent activation energy was 38.9 kJ/mol.Microwave heating technology is efficient,clean,and easy to control and facilitate continuous processing of materials.