The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achi...The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na_(2)CO_(3)/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400℃ for 0.50 h and the second stage at 900℃ for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S_(3)^(−) and S_(2)^(−) radicals. Furthermore, SiO2 (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH_(3)·H_(2)O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.展开更多
Infection by foot-and-mouth disease virus(FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditio...Infection by foot-and-mouth disease virus(FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditions renders inactivated foot-and-mouth disease(FMD) vaccines much less effective. Type Asia1 FMDV mutants with increased resistance to acid inactivation were selected to study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of FMDV. Sequencing of capsid-coding regions revealed four amino acid replacements(VP1 N17D, VP2 H145Y, VP2 G192D, and VP3 K153E) in the viral population of the acid-selected 10th passage. We performed single or combined mutagenesis using a reverse genetic system, and our results provide direct experimental evidence that VP2 H145Y or VP1 N17D substitution confers an acid-resistant phenotype to type Asia1 FMDV.展开更多
基金supported by the National Key Research and Development Program of China(2017YFD0800301)Liaoning Province Education Administration(No.LJ2020008,LQ2020023,and LQ2020027)Program for Liaoning Innovative Research Team in University(LT2020016).
文摘The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na_(2)CO_(3)/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400℃ for 0.50 h and the second stage at 900℃ for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S_(3)^(−) and S_(2)^(−) radicals. Furthermore, SiO2 (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH_(3)·H_(2)O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.
基金supported by grants from the National Natural Science Foundation of China(No. 31101801)
文摘Infection by foot-and-mouth disease virus(FMDV) is triggered by the acidic pH in endosomes after virus uptake by receptor-mediated endocytosis. However, dissociation of the FMDV 146S particle in mildly acidic conditions renders inactivated foot-and-mouth disease(FMD) vaccines much less effective. Type Asia1 FMDV mutants with increased resistance to acid inactivation were selected to study the molecular basis of viral resistance to acid-induced disassembly and improve the acid stability of FMDV. Sequencing of capsid-coding regions revealed four amino acid replacements(VP1 N17D, VP2 H145Y, VP2 G192D, and VP3 K153E) in the viral population of the acid-selected 10th passage. We performed single or combined mutagenesis using a reverse genetic system, and our results provide direct experimental evidence that VP2 H145Y or VP1 N17D substitution confers an acid-resistant phenotype to type Asia1 FMDV.