Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl...Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.展开更多
Physical solvents such as ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) are commonly used in wet gas dehydration processes with TEG being the most popular due to ease of regeneratio...Physical solvents such as ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) are commonly used in wet gas dehydration processes with TEG being the most popular due to ease of regeneration and low solvent losses. Unfortunately, TEG absorbs significantly more hydrocarbons and acid gases than EG or DEG. Quantifying this amount of absorption is therefore critical in order to minimize hydrocarbon losses or to optimize hydrocarbon recovery depending on the objective of the process. In this article, a new correlation that fully covers the operating ranges of TEG dehydration units is developed in order to determine the solubility of light alkanes and acid gases in TEG solvent. The influence of several parameters on hydrocarbon and acid gas solubility including temperature, pressure, and solvent content is also examined.展开更多
Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A goo...Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A good understanding of the relative permeability and capillary pressure characteristics is crucial to predict the process of acid gas injection and migration.The prediction of injection and redistribution of acid gas is important to determine storage capacity,formation pressure,plume extent,shape,and leakage potential.Herein,the existing experimental data and theoretical models were reviewed to gain a better understanding of the issue how the H_(2)S content affects gas density,gas viscosity,interfacial tension,wettability,relative permeability and capillary pressure characteristics of acid gas/brine/rock systems.The densities and viscosities of the acid gas with different H_(2)S mole fractions are both temperature-and pressure-dependent,which vary among the gas,liquid and supercritical phases.Water/acid gas interfacial tension decreases strongly with increasing H_(2)S content.For mica and clean quartz,water contact angle increases with increasing H_(2)S mole fraction.In particular,wettability reversal of mica to a H_(2)S-wet behavior occurs in the presence of dense H_(2)S.The capillary pressure increases with decreasing contact angle.At a given saturation,the relative permeability of a fluid is higher when the fluid is nonwetting.The capillary pressure decreases with decreasing interfacial tension at a given saturation.However,the existing datasets do not show a consistent link between capillary number and relative permeability.The capillary pressure decreases with increasing H_(2)S mole fraction.However,there is no consensus on the effect of the H_(2)S content on the relative permeability curves.This may be due to the limited availability of the relative permeability and capillary pressure data for acid gas/brine/rock systems;thus,more experimental measurements are required.展开更多
Acid gas injection into saline aquifers is one of promising ways to reduce greenhouse gas emissions and to dispose hazardous waste simultaneously. On the basis of Level Set method, an improved mathematical model that ...Acid gas injection into saline aquifers is one of promising ways to reduce greenhouse gas emissions and to dispose hazardous waste simultaneously. On the basis of Level Set method, an improved mathematical model that described interfacial dynamics of acid gas-brine system in a deep confined saline aquifer was proposed for predicting the propagation of the acid gas plume, which was featured by using Peng-Robinson equation and modified Lucas equation to describe variations of the density and viscosity of acid gas in saline aquifers. The evolutional characte^stics of acid gas plume were obtained through numerical simulations using COMSOL Multiphysics 3.5a. The results showed that under intrinsic characteristics of aquifers and operational conditions given, the variation of acid gas density was the major factor that influences the patterns and shapes of the plume. The leading edge position of acid gas plume was intensively dependent on the acid gas composition. Under the scheme of fixed mass flow rate injection, as the molar fraction of H2S increased, the position of leading edge advanced gradually towards the injection well. Moreover, the estimation of the storage efficiency of acid gas in saline aquifers was clarified and discussed. The proposed approach and the simulation results will provide insights into the determination of optimal operational strategies and rapid identification of the consequences of acid gas injection into deep confined saline aquifers.展开更多
The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albica...The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) were examined by capillary gas chromatography. On the basis of fatty acid composition, all strains could be differentiated as to species. These results indicate that capillary gas chromatographic analysis of cellular fatty acids is likely to be useful for rapid identification or grouping of newer isolates of yeast species.展开更多
Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [ba...Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.展开更多
The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium b...The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.展开更多
Based on studies of controlling NOx from nitric acid exhaust gas domestic and abroad, this paper has developed a new technique on removal of NOx and production of aby-product with high added value-MnO2. Experimentshow...Based on studies of controlling NOx from nitric acid exhaust gas domestic and abroad, this paper has developed a new technique on removal of NOx and production of aby-product with high added value-MnO2. Experimentshows, pyrolusite, whose valid composition is MnO2 , of absorbing NOx has the following characteristics: quick, low cost, no secondary pollutant. Moreover, exhaust gas can attain the required standards. If the temperature of the pyrolusite serum is 30℃ , pH = 4, containing 90 g/L MnO2, the absorptivity for 3 000 mg/m3 NOx is 89. 2%. Furthermore, few of the impurities in pyrolusite dissolve in the absorption mother solution. The purification cost of product is very low. The purity of end product MnO2 is more than 99. 995% after purifying. Therefore, it is workable for the new technique on economy and technology. There are also obvious environmental benefits and marked economic returns.展开更多
Ni^(2+)-doped ZnO nanorods with different doping concentrations are prepared via the solvothermal method.The doped ZnO nanorods are characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM)...Ni^(2+)-doped ZnO nanorods with different doping concentrations are prepared via the solvothermal method.The doped ZnO nanorods are characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM),respectively.The amount of Ni^(2+) ions that enter the lattice of ZnO increases with increasing the Ni^(2+)/Zn^(2+) molar ratio when the molar ratio of Ni^(2+)/Zn^(2+) in the starting solution is lower than 3%and does not change obviously if the mole ratio of Ni^(2+)/Zn^(2+) in the starting solution is in the range of 3-10 mol%.The effect of Ni^(2+) doping on the gas-sensing properties is investigated.The results reveal that the amount of Ni^(2+) has a great influence on the response(R_a/R_g) and the gas-sensing selectivity.The sensor based on 1 mol%Ni^(2+) doped ZnO nanorods (120℃,10 h) exhibits a high response to acetic acid vapor,in particular,the responses to 0.001 ppm and 0.01 ppm acetic acid vapor reach 1.6 and 2,respectively.The response time and the recovery time for 0.001 ppm acetic acid are only 4 s and 27 s,respectively.展开更多
H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formati...H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formation of SO_(2) and catalyst deactivation inevitably occur, due to the temperature rise of fixed reaction bed caused by the exothermic reaction. Catalyst with high activity in wide operating temperature window, especially in high temperature range, is urgently needed. In this paper, a series of copper-substituted hexaaluminate catalysts (LaCu_(x), x = 0, 0.5, 1, 1.5, 2, 2.5) were prepared and investigated for the H_(2)S selective oxidation reaction at high temperature conditions (300-550℃). The LaCu_(1) catalyst exhibited excellent catalytic performance and great stability, which was attributed to the best reductive properties and proper pore structure. Besides, two facile deep processing paths were proposed to eliminate the remaining H_(2)S and SO_(2) in the tail gas.展开更多
Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the fie...Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.展开更多
Solvothermal reaction of 3-aminoisonicotinic acid(Haina) and Cu(NO_3)_2·2.5H_2O gave a novel twodimensional(2D) microporous metal–organic framework, [Cu(aina)_2(DMF)]·DMF(1, DMF = N,N-dimethylfor...Solvothermal reaction of 3-aminoisonicotinic acid(Haina) and Cu(NO_3)_2·2.5H_2O gave a novel twodimensional(2D) microporous metal–organic framework, [Cu(aina)_2(DMF)]·DMF(1, DMF = N,N-dimethylformamide). Single-crystal X-ray crystallographic study of compound 1 revealed that Cu(II)ions are linked by ainaàligands forming square grid-like layers, which stack together via multiple hydrogen bonding interactions. The solvent-free framework of 1a displayed considerable porosity(void = 46.5%) with one-dimensional(1D) open channels(4.7 ? ? 4.8 ?) functionalized by amino groups.Gas sorption measurements of 1 revealed selective carbon dioxide(CO_2) and acetylene(C_2H_2) adsorption over methane(CH_4) and nitrogen(N_2) at ambient temperature.展开更多
Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual...Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.展开更多
In anaerobic digestion, the production of short-chain fatty acids (SCFAs) can be beneficial or harmful to the overall process, depending on the concentration of accumulated acids. Therefore, the accurate determinati...In anaerobic digestion, the production of short-chain fatty acids (SCFAs) can be beneficial or harmful to the overall process, depending on the concentration of accumulated acids. Therefore, the accurate determination of the SCFA concentration in both fresh and stored sludge hydrolysates is important. To select a suitable method for monitoring SCFAs during the anaerobic digestion of sewage sludge, the accuracy of three available analytical methods, including 5 pH point acid titration (TITRA5), gas chromatography (GC), and spectrophotometry, were compared in the present study. The results revealed that TITRA5 and GC displayed better agreement in the achieved measurements and higher precision and accuracy than the spectrophotometric assay, as supported by the application of different statistical models. TITRA5 excelled in titrating unfiltered hydrolysate while simultaneously measuring the alkalinity, whereas the GC method provided detailed information on the contribution of different fatty acids to the total acidity. In contrast, the spectrophotometric assay suffered from many forms of interference, depending on the sample's matrix. SCFA production followed the pattern of enzymatic reactions and fitted the Michaelis-Menten model. In addition to promoting TITRA5 as an accurate and robust analytical tool for routine SCFA analyses, this comparative study also demonstrated the possibility of storing hydrolysate samples at different temperatures and durations without altering the SCFA measurements.展开更多
基金supported by the National Natural Science Foundation of China(21978092).
文摘Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.
文摘Physical solvents such as ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) are commonly used in wet gas dehydration processes with TEG being the most popular due to ease of regeneration and low solvent losses. Unfortunately, TEG absorbs significantly more hydrocarbons and acid gases than EG or DEG. Quantifying this amount of absorption is therefore critical in order to minimize hydrocarbon losses or to optimize hydrocarbon recovery depending on the objective of the process. In this article, a new correlation that fully covers the operating ranges of TEG dehydration units is developed in order to determine the solubility of light alkanes and acid gases in TEG solvent. The influence of several parameters on hydrocarbon and acid gas solubility including temperature, pressure, and solvent content is also examined.
基金the National Natural Science Foundation of China(Grant Nos.41872210 and 41274111)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.Z018002)。
文摘Geological storage of acid gas has been identified as a promising approach to reduce atmospheric carbon dioxide(CO_(2)),hydrogen sulfide(H_(2)S)and alleviate public concern resulting from the sour gas production.A good understanding of the relative permeability and capillary pressure characteristics is crucial to predict the process of acid gas injection and migration.The prediction of injection and redistribution of acid gas is important to determine storage capacity,formation pressure,plume extent,shape,and leakage potential.Herein,the existing experimental data and theoretical models were reviewed to gain a better understanding of the issue how the H_(2)S content affects gas density,gas viscosity,interfacial tension,wettability,relative permeability and capillary pressure characteristics of acid gas/brine/rock systems.The densities and viscosities of the acid gas with different H_(2)S mole fractions are both temperature-and pressure-dependent,which vary among the gas,liquid and supercritical phases.Water/acid gas interfacial tension decreases strongly with increasing H_(2)S content.For mica and clean quartz,water contact angle increases with increasing H_(2)S mole fraction.In particular,wettability reversal of mica to a H_(2)S-wet behavior occurs in the presence of dense H_(2)S.The capillary pressure increases with decreasing contact angle.At a given saturation,the relative permeability of a fluid is higher when the fluid is nonwetting.The capillary pressure decreases with decreasing interfacial tension at a given saturation.However,the existing datasets do not show a consistent link between capillary number and relative permeability.The capillary pressure decreases with increasing H_(2)S mole fraction.However,there is no consensus on the effect of the H_(2)S content on the relative permeability curves.This may be due to the limited availability of the relative permeability and capillary pressure data for acid gas/brine/rock systems;thus,more experimental measurements are required.
基金Supported by the National Natural Science Foundation of China (21176198), and the Research Fund for the Doctoral Program of Higher Education of China (2012021110071).
文摘Acid gas injection into saline aquifers is one of promising ways to reduce greenhouse gas emissions and to dispose hazardous waste simultaneously. On the basis of Level Set method, an improved mathematical model that described interfacial dynamics of acid gas-brine system in a deep confined saline aquifer was proposed for predicting the propagation of the acid gas plume, which was featured by using Peng-Robinson equation and modified Lucas equation to describe variations of the density and viscosity of acid gas in saline aquifers. The evolutional characte^stics of acid gas plume were obtained through numerical simulations using COMSOL Multiphysics 3.5a. The results showed that under intrinsic characteristics of aquifers and operational conditions given, the variation of acid gas density was the major factor that influences the patterns and shapes of the plume. The leading edge position of acid gas plume was intensively dependent on the acid gas composition. Under the scheme of fixed mass flow rate injection, as the molar fraction of H2S increased, the position of leading edge advanced gradually towards the injection well. Moreover, the estimation of the storage efficiency of acid gas in saline aquifers was clarified and discussed. The proposed approach and the simulation results will provide insights into the determination of optimal operational strategies and rapid identification of the consequences of acid gas injection into deep confined saline aquifers.
文摘The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) were examined by capillary gas chromatography. On the basis of fatty acid composition, all strains could be differentiated as to species. These results indicate that capillary gas chromatographic analysis of cellular fatty acids is likely to be useful for rapid identification or grouping of newer isolates of yeast species.
基金Supported by the National Natural Science Foundation of China (20776065), the Natural Science Foundation of Jiangsu Province (BK2008023), and the National Found for Fostering Talents of Basic Science 00630425).
文摘Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.
文摘The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.
基金Supported by the Key Research Program Fundation of the Education Bureau of Sichuan Province in China(1999127)
文摘Based on studies of controlling NOx from nitric acid exhaust gas domestic and abroad, this paper has developed a new technique on removal of NOx and production of aby-product with high added value-MnO2. Experimentshows, pyrolusite, whose valid composition is MnO2 , of absorbing NOx has the following characteristics: quick, low cost, no secondary pollutant. Moreover, exhaust gas can attain the required standards. If the temperature of the pyrolusite serum is 30℃ , pH = 4, containing 90 g/L MnO2, the absorptivity for 3 000 mg/m3 NOx is 89. 2%. Furthermore, few of the impurities in pyrolusite dissolve in the absorption mother solution. The purification cost of product is very low. The purity of end product MnO2 is more than 99. 995% after purifying. Therefore, it is workable for the new technique on economy and technology. There are also obvious environmental benefits and marked economic returns.
基金supported by the National Natural Science Foundation of China(No.61271156)the Innovation Team Project of AHUT(No. TD201204)the Research Project for University Personnel Returning from Overseas Sponsored by the Ministry of Education of China
文摘Ni^(2+)-doped ZnO nanorods with different doping concentrations are prepared via the solvothermal method.The doped ZnO nanorods are characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM),respectively.The amount of Ni^(2+) ions that enter the lattice of ZnO increases with increasing the Ni^(2+)/Zn^(2+) molar ratio when the molar ratio of Ni^(2+)/Zn^(2+) in the starting solution is lower than 3%and does not change obviously if the mole ratio of Ni^(2+)/Zn^(2+) in the starting solution is in the range of 3-10 mol%.The effect of Ni^(2+) doping on the gas-sensing properties is investigated.The results reveal that the amount of Ni^(2+) has a great influence on the response(R_a/R_g) and the gas-sensing selectivity.The sensor based on 1 mol%Ni^(2+) doped ZnO nanorods (120℃,10 h) exhibits a high response to acetic acid vapor,in particular,the responses to 0.001 ppm and 0.01 ppm acetic acid vapor reach 1.6 and 2,respectively.The response time and the recovery time for 0.001 ppm acetic acid are only 4 s and 27 s,respectively.
基金financially supported by the National Natural Science Foundation of China (Nos. 21976176, 22006148)the Key R&D Program of Shandong province (No. 2019JZZY010506)the Fundamental Research Funds for the Central Universities。
文摘H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formation of SO_(2) and catalyst deactivation inevitably occur, due to the temperature rise of fixed reaction bed caused by the exothermic reaction. Catalyst with high activity in wide operating temperature window, especially in high temperature range, is urgently needed. In this paper, a series of copper-substituted hexaaluminate catalysts (LaCu_(x), x = 0, 0.5, 1, 1.5, 2, 2.5) were prepared and investigated for the H_(2)S selective oxidation reaction at high temperature conditions (300-550℃). The LaCu_(1) catalyst exhibited excellent catalytic performance and great stability, which was attributed to the best reductive properties and proper pore structure. Besides, two facile deep processing paths were proposed to eliminate the remaining H_(2)S and SO_(2) in the tail gas.
文摘Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.
基金supported by the grant AX-1593(JCGZ)and AX1730(BC)from the Welch Foundation
文摘Solvothermal reaction of 3-aminoisonicotinic acid(Haina) and Cu(NO_3)_2·2.5H_2O gave a novel twodimensional(2D) microporous metal–organic framework, [Cu(aina)_2(DMF)]·DMF(1, DMF = N,N-dimethylformamide). Single-crystal X-ray crystallographic study of compound 1 revealed that Cu(II)ions are linked by ainaàligands forming square grid-like layers, which stack together via multiple hydrogen bonding interactions. The solvent-free framework of 1a displayed considerable porosity(void = 46.5%) with one-dimensional(1D) open channels(4.7 ? ? 4.8 ?) functionalized by amino groups.Gas sorption measurements of 1 revealed selective carbon dioxide(CO_2) and acetylene(C_2H_2) adsorption over methane(CH_4) and nitrogen(N_2) at ambient temperature.
文摘Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.
文摘In anaerobic digestion, the production of short-chain fatty acids (SCFAs) can be beneficial or harmful to the overall process, depending on the concentration of accumulated acids. Therefore, the accurate determination of the SCFA concentration in both fresh and stored sludge hydrolysates is important. To select a suitable method for monitoring SCFAs during the anaerobic digestion of sewage sludge, the accuracy of three available analytical methods, including 5 pH point acid titration (TITRA5), gas chromatography (GC), and spectrophotometry, were compared in the present study. The results revealed that TITRA5 and GC displayed better agreement in the achieved measurements and higher precision and accuracy than the spectrophotometric assay, as supported by the application of different statistical models. TITRA5 excelled in titrating unfiltered hydrolysate while simultaneously measuring the alkalinity, whereas the GC method provided detailed information on the contribution of different fatty acids to the total acidity. In contrast, the spectrophotometric assay suffered from many forms of interference, depending on the sample's matrix. SCFA production followed the pattern of enzymatic reactions and fitted the Michaelis-Menten model. In addition to promoting TITRA5 as an accurate and robust analytical tool for routine SCFA analyses, this comparative study also demonstrated the possibility of storing hydrolysate samples at different temperatures and durations without altering the SCFA measurements.