This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simu...This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.展开更多
文摘This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.