Background: In the last years, difficulties occurring in corn cultivation(i.e., groundwater shortages, mycotoxin contamination) have been forcing dairy farmers to consider alternative silages. Some experiments cond...Background: In the last years, difficulties occurring in corn cultivation(i.e., groundwater shortages, mycotoxin contamination) have been forcing dairy farmers to consider alternative silages. Some experiments conducted on lactating cows have proven that the total replacement of corn silage with sorghum silage did not reduce milk yield.However, this kind of substitution involves supplementing sorghum-based diets with grains, to compensate for the lower starch content of sorghum silage compared to corn silage. Change of silage type and inclusion of starch sources in the diet would influence rumen fermentations, with possible effects on milk composition(i.e., fatty acid profile) and coagulation properties. A worsening of milk coagulation properties would have a negative economic impact in Italy, where most of the milk produced is processed into cheese.This study was designed to compare milk composition and quality, with emphasis on fatty acid profile and coagulation properties, in dairy cows fed two diets based on corn or sorghum silage.Results: The sorghum diet reduced milk yield(P = 0.043) but not 4% fat corrected milk(P = 0.85). Feeding sorghum silage did not influence milk contents of protein(P = 0.07) and lactose(P = 0.65), and increased fat content(P = 0.024).No differences emerged for milk concentrations of saturated(P = 0.61) and monounsaturated fatty acids(P = 0.50),whereas polyunsaturated fatty acids were lower(P 〈 0.001) for the sorghum diet. Concentrations of n-6(P 〈 0.001) and n-3 fatty acids(P = 0.017) were lower in milk of cows fed the sorghum diet. Milk coagulation properties did not differ between the two diets, except the "a30"(the curd firmness, expressed in mm, 30 min after rennet addition), that was lower(P = 0.042) for the sorghum diet.Conclusions: Feeding a forage sorghum silage, properly supplemented with corn meal, as total replacement of corn silage maintained milk composition and did not influence negatively milk coagulation properties, which have a great economic relevance for the Italian dairy industry. Thus, silages obtained from forage sorghums could have a potential as substitute of corn silages in dairy cow diets.展开更多
Organic acids as important constituents of organic aerosols not only influence the aerosols' hygroscopic property, but also enhance the formation of new particles and secondary organic aerosols. This study reported o...Organic acids as important constituents of organic aerosols not only influence the aerosols' hygroscopic property, but also enhance the formation of new particles and secondary organic aerosols. This study reported organic acids including C14-C32 fatty acids, C4-C9 dicarboxylic acids and aromatic acids in PM2.5 collected during winter 2009 at six typical urban, suburban and rural sites in the Pearl River Delta region. Averaged concentrations of C14-C32 fatty acids, aromatic acids and C4- C9 dicarboxylic acids were 157, 72.5 and 50.7 ng/m3, respectively. They totally accounted for 1.7% of measured organic carbon. C20-C32 fatty acids mainly deriving from higher plant wax showed the highest concentration at the upwind rural site with more vegetation around, while Cl4-C18 fatty acids were more abundant at urban and suburban sites, and dicarboxylic acids and aromatic acids except 1,4-phthalic acid peaked at the downwind rural site. Succinic and azelaic acid were the most abundant among C4-C9 dicarboxylic acids, and 1,2-phthalic and 1,4-phthalic acid were dominant aromatic acids. Dicarboxylic acids and aromatic acids exhibited significant mutual correlations except for 1,4-phthalic acid, which was probably primarily emitted from combustion of solid wastes containing polyethylene terephthalate plastics. Spatial patterns and correlations with typical source tracers suggested that C14-C32 fatty acids were mainly primary while dicarboxylic and aromatic acids were largely secondary. Principal component analysis resolved six sources including biomass burning, natural higher plant wax, two mixed anthropogenic and two secondary sources; further multiple linear regression revealed their contributions to individual organic acids. It turned out that more than 70% of C14-C18 fatty acids were attributed to anthropogenic sources, about 50%-85% of the C20-C32 fatty acids were attributed to natural sources, 80%-95% of dicarboxylic acids and 1,2-phthalic acid were secondary in contrast with that 81% of 1,4-phthalic acid was primary.展开更多
Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobili...Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.展开更多
Oxalic acid(C_(2))is a significant tracer of secondary organic aerosols(SOA),yet its precursors,evolutionary processes,and formation mechanisms are not fully understood.This knowledge gap leads to uncertainties in eva...Oxalic acid(C_(2))is a significant tracer of secondary organic aerosols(SOA),yet its precursors,evolutionary processes,and formation mechanisms are not fully understood.This knowledge gap leads to uncertainties in evaluating the climate effect and global budget of SOA.Here we compared the size distribution,mixing fraction,and evolutionary mechanism of C_(2)-containing particles between summer and winter.In summer,the number of C_(2) particles and their homologs decreased compared to winter.However,the proportion of C_(2) relative to the total number of determined particles increased,indicating that the summertime particles are more aged.Higher relative aerosol acidity(Rra)and lower in-situ pH(pHis)in summer suggest that particles are more acidic during this season.Correlation analysis and temporal variation characteristics suggest that from 9:00 to 15:00 in summer,C_(2) particles mostly originate from the photochemical decomposition of larger dicarboxylic aids,driven by O3 concentration.Conversely,from 16:00 to 20:00,C_(2) particles are predominantly formed through aqueous-phase oxidation,influenced by higher relative humidity(RH),aerosol liquid water content(ALWC),and acidity.Additionally,heavy metal particles were the predominant type of C_(2) particles,and C_(2) particles exhibited an opposite diurnal variation to Fe in summer,suggesting that the photolysis of iron oxalate complexes is an important sink of C_(2) particles during this period.In winter,biomass burning(BB)particles were the most abundant,and a robust correlation between levoglucosan and C_(2) particles indicated a substantial influence of BB on C_(2) particles.The aqueous generation of C_(2) particles fromα-dicarbonyls driven by acidity was most effective when RH varied from 40%to 60%in the wintertime state of particles.These findings highlight the hourly and seasonal variations in the sources and evolutionary processes of SOA.Such variations must be considered in developing control measures and simulating the climate effect of SOA.展开更多
To investigate formation mechanisms of secondary organic carbon(SOC) in Eastern China,measurements were conducted in an urban site in Shanghai in the summer of 2015. A period of high O3 concentrations(daily peak 〉...To investigate formation mechanisms of secondary organic carbon(SOC) in Eastern China,measurements were conducted in an urban site in Shanghai in the summer of 2015. A period of high O3 concentrations(daily peak 〉 120 ppb) was observed, during which daily maximum SOC concentrations exceeding 9.0 μg/(C·m^3). Diurnal variations of SOC concentration and SOC/organic carbon(OC) ratio exhibited both daytime and nighttime peaks. The SOC concentrations correlated well with Ox(= O3+ NO2) and relative humidity in the daytime and nighttime, respectively, suggesting that secondary organic aerosol formation in Shanghai is driven by both photochemical production and aqueous phase reactions. Single particle mass spectrometry was used to examine the formation pathways of SOC. Along with the daytime increase of SOC, the number fraction of elemental carbon(EC) particles coated with OC quickly increased from 38.1% to 61.9% in the size range of 250–2000 nm, which was likely due to gas-to-particle partitioning of photochemically generated semi-volatile organic compounds onto EC particles. In the nighttime, particles rich in OC components were highly hygroscopic, and number fraction of these particles correlated well with relative humidity and SOC/OC nocturnal peaks. Meanwhile, as an aqueous-phase SOC tracer, particles that contained oxalate-Fe(III) complex also peaked at night. These observations suggested that aqueous-phase processes had an important contribution to the SOC nighttime formation. The influence of aerosol acidity on SOC formation was studied by both bulk and single particle level measurements, suggesting that the aqueous-phase formation of SOC was enhanced by particle acidity.展开更多
Road-deposited sediments(RDS) on urban impervious surfaces are important carriers of heavy metals.Dissolved heavy metals that come from RDS influenced by acid rain,are more harmful to urban receiving water than part...Road-deposited sediments(RDS) on urban impervious surfaces are important carriers of heavy metals.Dissolved heavy metals that come from RDS influenced by acid rain,are more harmful to urban receiving water than particulate parts.RDS and its associated heavy metals were investigated at typical functional areas,including industrial,commercial and residential sites,in Guangdong,Southern China,which was an acid rain sensitive area.Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios.Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above3.0,regardless of land use.Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types.Coarse particles(>150 μm) that could be efficiently removed by conventional street sweepers,accounted for 55.1%-47.1%of the total dissolved metal loading in runoff with pH 3.0-5.6.The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain.展开更多
Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We fi...Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies, However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16,9 nm/h. The needed concentration of condensable vapor was 6.1 × 10^7 cm-3, and its source rate was 1.1× 10^6 cm-3 s 1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.展开更多
The oxidation of SO2 is commonly regarded as a major driver for new particle formation(NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term(d...The oxidation of SO2 is commonly regarded as a major driver for new particle formation(NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term(duration 〉 3 hr) and short-term(duration〈 1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates(J30) showed a moderate correlation with the concentration of sulfuric acid([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events(Category I)(R^2= 0.66). The exponent in the fitting line of J30~ [H2SO4]nin these events was1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events,leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events(Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of 〉 10 nm new particles.展开更多
Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the fie...Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.展开更多
基金financed by a private company(KWS Italia Spa)located in Monselice,Italy
文摘Background: In the last years, difficulties occurring in corn cultivation(i.e., groundwater shortages, mycotoxin contamination) have been forcing dairy farmers to consider alternative silages. Some experiments conducted on lactating cows have proven that the total replacement of corn silage with sorghum silage did not reduce milk yield.However, this kind of substitution involves supplementing sorghum-based diets with grains, to compensate for the lower starch content of sorghum silage compared to corn silage. Change of silage type and inclusion of starch sources in the diet would influence rumen fermentations, with possible effects on milk composition(i.e., fatty acid profile) and coagulation properties. A worsening of milk coagulation properties would have a negative economic impact in Italy, where most of the milk produced is processed into cheese.This study was designed to compare milk composition and quality, with emphasis on fatty acid profile and coagulation properties, in dairy cows fed two diets based on corn or sorghum silage.Results: The sorghum diet reduced milk yield(P = 0.043) but not 4% fat corrected milk(P = 0.85). Feeding sorghum silage did not influence milk contents of protein(P = 0.07) and lactose(P = 0.65), and increased fat content(P = 0.024).No differences emerged for milk concentrations of saturated(P = 0.61) and monounsaturated fatty acids(P = 0.50),whereas polyunsaturated fatty acids were lower(P 〈 0.001) for the sorghum diet. Concentrations of n-6(P 〈 0.001) and n-3 fatty acids(P = 0.017) were lower in milk of cows fed the sorghum diet. Milk coagulation properties did not differ between the two diets, except the "a30"(the curd firmness, expressed in mm, 30 min after rennet addition), that was lower(P = 0.042) for the sorghum diet.Conclusions: Feeding a forage sorghum silage, properly supplemented with corn meal, as total replacement of corn silage maintained milk composition and did not influence negatively milk coagulation properties, which have a great economic relevance for the Italian dairy industry. Thus, silages obtained from forage sorghums could have a potential as substitute of corn silages in dairy cow diets.
基金supported by the National Natural Science Foundation of China(No.41025012,40673074)NSFC-Guangdong Joint Natural Science Foundation(No.U0833003)
文摘Organic acids as important constituents of organic aerosols not only influence the aerosols' hygroscopic property, but also enhance the formation of new particles and secondary organic aerosols. This study reported organic acids including C14-C32 fatty acids, C4-C9 dicarboxylic acids and aromatic acids in PM2.5 collected during winter 2009 at six typical urban, suburban and rural sites in the Pearl River Delta region. Averaged concentrations of C14-C32 fatty acids, aromatic acids and C4- C9 dicarboxylic acids were 157, 72.5 and 50.7 ng/m3, respectively. They totally accounted for 1.7% of measured organic carbon. C20-C32 fatty acids mainly deriving from higher plant wax showed the highest concentration at the upwind rural site with more vegetation around, while Cl4-C18 fatty acids were more abundant at urban and suburban sites, and dicarboxylic acids and aromatic acids except 1,4-phthalic acid peaked at the downwind rural site. Succinic and azelaic acid were the most abundant among C4-C9 dicarboxylic acids, and 1,2-phthalic and 1,4-phthalic acid were dominant aromatic acids. Dicarboxylic acids and aromatic acids exhibited significant mutual correlations except for 1,4-phthalic acid, which was probably primarily emitted from combustion of solid wastes containing polyethylene terephthalate plastics. Spatial patterns and correlations with typical source tracers suggested that C14-C32 fatty acids were mainly primary while dicarboxylic and aromatic acids were largely secondary. Principal component analysis resolved six sources including biomass burning, natural higher plant wax, two mixed anthropogenic and two secondary sources; further multiple linear regression revealed their contributions to individual organic acids. It turned out that more than 70% of C14-C18 fatty acids were attributed to anthropogenic sources, about 50%-85% of the C20-C32 fatty acids were attributed to natural sources, 80%-95% of dicarboxylic acids and 1,2-phthalic acid were secondary in contrast with that 81% of 1,4-phthalic acid was primary.
基金supported by the Nature Science Foundation of Heilongjiang Province (No. B201410)the Postdoctoral Foundation Project of Heilongjiang Province (No. LBH-Z13128)+3 种基金the Science and Technology Research Program of Education Bureau of Heilongjiang Province (No. 12531206)the Special Scientific Research Projects of Harbin Normal University (12XQXG02)the National Nature Science Foundation of China (No. 41030743)the National Nature Science Foundation of China (No. 42171217)
文摘Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.
基金supported by the National Natural Science Foundation of China (grant No.42177083)the Junior Faculty Support Program for Scientific and Technological Innovations in Shandong Provincial Higher Education Institutions (grant No.2021KJ085).
文摘Oxalic acid(C_(2))is a significant tracer of secondary organic aerosols(SOA),yet its precursors,evolutionary processes,and formation mechanisms are not fully understood.This knowledge gap leads to uncertainties in evaluating the climate effect and global budget of SOA.Here we compared the size distribution,mixing fraction,and evolutionary mechanism of C_(2)-containing particles between summer and winter.In summer,the number of C_(2) particles and their homologs decreased compared to winter.However,the proportion of C_(2) relative to the total number of determined particles increased,indicating that the summertime particles are more aged.Higher relative aerosol acidity(Rra)and lower in-situ pH(pHis)in summer suggest that particles are more acidic during this season.Correlation analysis and temporal variation characteristics suggest that from 9:00 to 15:00 in summer,C_(2) particles mostly originate from the photochemical decomposition of larger dicarboxylic aids,driven by O3 concentration.Conversely,from 16:00 to 20:00,C_(2) particles are predominantly formed through aqueous-phase oxidation,influenced by higher relative humidity(RH),aerosol liquid water content(ALWC),and acidity.Additionally,heavy metal particles were the predominant type of C_(2) particles,and C_(2) particles exhibited an opposite diurnal variation to Fe in summer,suggesting that the photolysis of iron oxalate complexes is an important sink of C_(2) particles during this period.In winter,biomass burning(BB)particles were the most abundant,and a robust correlation between levoglucosan and C_(2) particles indicated a substantial influence of BB on C_(2) particles.The aqueous generation of C_(2) particles fromα-dicarbonyls driven by acidity was most effective when RH varied from 40%to 60%in the wintertime state of particles.These findings highlight the hourly and seasonal variations in the sources and evolutionary processes of SOA.Such variations must be considered in developing control measures and simulating the climate effect of SOA.
基金supported by the National Natural Science Foundation of China(Nos.91544224,21507010,41775150)the Ministry of Science&Technology of China(No.2012YQ220113-4)the Changjiang Scholars program of the Chinese Ministry of Education
文摘To investigate formation mechanisms of secondary organic carbon(SOC) in Eastern China,measurements were conducted in an urban site in Shanghai in the summer of 2015. A period of high O3 concentrations(daily peak 〉 120 ppb) was observed, during which daily maximum SOC concentrations exceeding 9.0 μg/(C·m^3). Diurnal variations of SOC concentration and SOC/organic carbon(OC) ratio exhibited both daytime and nighttime peaks. The SOC concentrations correlated well with Ox(= O3+ NO2) and relative humidity in the daytime and nighttime, respectively, suggesting that secondary organic aerosol formation in Shanghai is driven by both photochemical production and aqueous phase reactions. Single particle mass spectrometry was used to examine the formation pathways of SOC. Along with the daytime increase of SOC, the number fraction of elemental carbon(EC) particles coated with OC quickly increased from 38.1% to 61.9% in the size range of 250–2000 nm, which was likely due to gas-to-particle partitioning of photochemically generated semi-volatile organic compounds onto EC particles. In the nighttime, particles rich in OC components were highly hygroscopic, and number fraction of these particles correlated well with relative humidity and SOC/OC nocturnal peaks. Meanwhile, as an aqueous-phase SOC tracer, particles that contained oxalate-Fe(III) complex also peaked at night. These observations suggested that aqueous-phase processes had an important contribution to the SOC nighttime formation. The influence of aerosol acidity on SOC formation was studied by both bulk and single particle level measurements, suggesting that the aqueous-phase formation of SOC was enhanced by particle acidity.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment,National Water Grant(No.2012ZX07301-001)the Shenzhen Environmental Commission and Science and Innovation Commission(Nos.GJHZ20140416153751129,JCYJ20150625103501697,20140417115840247)+1 种基金Natural Science Foundation of SZU(grant no.2016007 and 827-000102)the Normal Project of Water Technology Innovation
文摘Road-deposited sediments(RDS) on urban impervious surfaces are important carriers of heavy metals.Dissolved heavy metals that come from RDS influenced by acid rain,are more harmful to urban receiving water than particulate parts.RDS and its associated heavy metals were investigated at typical functional areas,including industrial,commercial and residential sites,in Guangdong,Southern China,which was an acid rain sensitive area.Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios.Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above3.0,regardless of land use.Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types.Coarse particles(>150 μm) that could be efficiently removed by conventional street sweepers,accounted for 55.1%-47.1%of the total dissolved metal loading in runoff with pH 3.0-5.6.The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain.
基金funded by the National Basic Research Program of China (2005CB422203, 2005CB422208)National Department Public Benefit Research Foundation (No.201009001)National Natural Science Foundation of China(Grant No. 41005065)
文摘Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies, However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16,9 nm/h. The needed concentration of condensable vapor was 6.1 × 10^7 cm-3, and its source rate was 1.1× 10^6 cm-3 s 1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.
基金the National Natural Science Foundation of China (No. 41176099, No. 41306101)
文摘The oxidation of SO2 is commonly regarded as a major driver for new particle formation(NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term(duration 〉 3 hr) and short-term(duration〈 1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates(J30) showed a moderate correlation with the concentration of sulfuric acid([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events(Category I)(R^2= 0.66). The exponent in the fitting line of J30~ [H2SO4]nin these events was1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events,leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events(Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of 〉 10 nm new particles.
文摘Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.