Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
Background:The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production.Paulownia leaves silage(PLS)was supplemented to dairy cows'diet and evaluated in vitro(...Background:The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production.Paulownia leaves silage(PLS)was supplemented to dairy cows'diet and evaluated in vitro(Exp.1;Rusitec)and in vivo(Exp.2,cannulated lactating dairy cows and Exp.3,non-cannulated lactating dairy cows).The study investigated the PLS effect on ruminal fermentation,microbial populations,methane production and concentration,dry matter intake(DMI),and fatty acid(FA)proportions in ruminal fluid and milk.Results:Several variables of the ruminal fluid were changed in response to the inclusion of PLS.In Exp.1,the p H increased linearly and quadratically,whereas ammonia and total volatile fatty acid(VFA)concentrations increased linearly and cubically.A linear,quadratic,and cubical decrease in methane concentration was observed with increasing dose of the PLS.Exp.2 revealed an increase in ruminal p H and ammonia concentrations,but no changes in total VFA concentration.Inclusion of PLS increased ruminal propionate(at 3 h and 6 h after feeding),isovalerate,and valerate concentrations.Addition of PLS also affected several populations of the analyzed microorganisms.The abundances of protozoa and bacteria were increased,whereas the abundance of archaea were decreased by PLS.Methane production decreased by 11%and 14%in PLS-fed cows compared to the control in Exp.2 and 3,respectively.Exp.3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows,but no effect on DMI and energy corrected milk yield.Also,the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15,conjugated linoleic acid,C18:1 trans-11 FA,polyunsaturated fatty acids(PUFA),and reduced n6/n3 ratio and saturated fatty acids(SFA)proportion in milk.The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased.Conclusions:The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA,including conjugated linoleic acid,and C18:1 trans-11 along with reduction of SFA.展开更多
Milk thistle(Silybum marianum)is a crucial medicinal plant containing a large amount of oil.In the study,the changes in storage oil during seed germination and seedling transition from heterotrophic phases were invest...Milk thistle(Silybum marianum)is a crucial medicinal plant containing a large amount of oil.In the study,the changes in storage oil during seed germination and seedling transition from heterotrophic phases were investigated.The results showed that seed oil decreased from 19.53%to 0.88%on the 7th day of seedling development.Oil hydrolysis continued until the 4th day of germination with a low slope,but then increased the use of oils in seed germination end seedling growth metabolism.The results indicated that the quantitative changes in fatty acids,presented at lower amount,were relatively higher than dominant fatty acids.There were decreasing phenolic content in the developing seedlings,but overall,lowest level of total phenolic content can be attributed to the control(30.52 mg⋅100 g⋅Oil^(-1)).In contrast,the maximum peroxide value(2.58 meq⋅kg Oil^(-1))in the developing seedling was observed on the last day of the experiment.The results showed that there was a significant correlation between saturated fatty acid,unsaturated fatty acid,and lipase activity.However,the correlation between lipase activity and polyunsaturated fatty acids was significantly higher than between lipase activity and monounsaturated fatty acids(R^(2)=90%and R^(2)=77%,respectively).Therefore,the lipolysis process acts selectively in milk thistle oils.According to the results,C12:0 exhibits a greater impact on the early seedling growth rather than on the germination process and is one of the determining factors in the transition from heterotroph to autotroph.Also,it can be a marker for TAGs breakdown.展开更多
Background:Lactic acid bacteria(LAB)participating in milk fermentation naturally release and enrich the fermented dairy product with a broad range of bioactive metabolites,which has numerous roles in the intestinal he...Background:Lactic acid bacteria(LAB)participating in milk fermentation naturally release and enrich the fermented dairy product with a broad range of bioactive metabolites,which has numerous roles in the intestinal health-promot-ing of the consumer.However,information is lacking regarding the application prospect of LAB fermented milk in the animal industry.This study investigated the effects of lactic acid bacteria-fermented formula milk(LFM)on the growth performance,intestinal immunity,microbiota composition,and transcriptomic responses in weaned piglets.A total of 24 male weaned piglets were randomly divided into the control(CON)and LFM groups.Each group consisted of 6 replicates(cages)with 2 piglets per cage.Each piglet in the LFM group were supplemented with 80 mL LFM three times a day,while the CON group was treated with the same amount of drinking water.Results:LFM significantly increased the average daily gain of piglets over the entire 14 d(P<0.01)and the average daily feed intake from 7 to 14 d(P<0.05).Compared to the CON group,ileal goblet cell count,villus-crypt ratio,sIgA,and lactate concentrations in the LFM group were significantly increased(P<0.05).Transcriptomic analysis of ileal mucosa identified 487 differentially expressed genes(DEGs)between two groups.Especially,DEGs involved in the intestinal immune network for IgA production pathways,such as polymeric immunoglobulin receptor(PIGR),were significantly up-regulated(P<0.01)by LFM supplementation.Moreover,trefoil factor 2(TFF2)in the LFM group,one of the DEGs involved in the secretory function of goblet cells,was also significantly up-regulated(P<0.01).Sequenc-ing of the 16S rRNA gene of microbiota demonstrated that LFM led to selective enrichment of lactate-producing and short-chain fatty acid(SCFA)-producing bacteria in the ileum,such as an increase in the relative abundance of Entero-coccus(P=0.09)and Acetitomaculum(P<0.05).Conclusions:LFM can improve intestinal health and immune tolerance,thus enhancing the growth performance of weaned piglets.The changes in microbiota and metabolites induced by LFM might mediate the regulation of the secretory function of goblet cells.展开更多
Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny.However,knowledge on the impact of fat on mammary transcription of lipogenic genes,de novo fat synthesis...Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny.However,knowledge on the impact of fat on mammary transcription of lipogenic genes,de novo fat synthesis,and milk fatty acid(FA)output is sparse in sows.This study aimed to evaluate impacts of dietary fat levels and FA composition on these traits in sows.Forty second-parity sows(Danish Landrace×Yorkshire)were assigned to 1 of 5 dietary treatments from d 108 of gestation until weaning(d 28 of lactation):low-fat control diet(3%added animal fat);or 1 of 4 high-fat diets with 8%added fat:coconut oil(CO),fish oil(FO),sunflower oil(SO),or 4%octanoic acid plus 4%FO(OFO).Three approaches were taken to estimate de novo milk fat synthesis from glucose and body fat.Results Daily intake of FA was lowest in low-fat sows within fat levels(P<0.01)and in OFO and FO sows within highfat diets(P<0.01).Daily milk outputs of fat,FA,energy,and FA-derived carbon reflected to a large extent the intake of those.On average,estimates for de novo fat synthesis were 82 or 194 g/d from glucose according to method 1 or 2 and 255 g de novo+mobilized FA/d according to method 3.The low-fat diet increased mammary FAS expression(P<0.05)and de novo fat synthesis(method 1;P=0.13)within fat levels.The OFO diet increased de novo fat synthesis(method 1;P<0.05)and numerically upregulated mammary FAS expression compared to the other high-fat diets.Across diets,a daily intake of 440 g digestible FA minimized milk fat originating from glucose and mobilized body fat.Conclusions Sows fed diets with low-fat or octanoic acid,through upregulating FAS expression,increased mammary de novo fat synthesis whereas the milk FA output remained low in sows fed the low-fat diet or high-fat OFO or FO diets,indicating that dietary FA intake,dietary fat level,and body fat mobilization in concert determine de novo fat synthesis,amount and profiles of FA in milk.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金a grant from the National Science Center,Poland(Grant No.2016/23/B/NZ9/03427)co-financed within the framework of the Polish Ministry of Science and Higher Education’s program:“Regional Initiative Excellence”in the years 2019–2022(No.005/RID/2018/19)“financing amount 12000000,00 PLN”。
文摘Background:The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production.Paulownia leaves silage(PLS)was supplemented to dairy cows'diet and evaluated in vitro(Exp.1;Rusitec)and in vivo(Exp.2,cannulated lactating dairy cows and Exp.3,non-cannulated lactating dairy cows).The study investigated the PLS effect on ruminal fermentation,microbial populations,methane production and concentration,dry matter intake(DMI),and fatty acid(FA)proportions in ruminal fluid and milk.Results:Several variables of the ruminal fluid were changed in response to the inclusion of PLS.In Exp.1,the p H increased linearly and quadratically,whereas ammonia and total volatile fatty acid(VFA)concentrations increased linearly and cubically.A linear,quadratic,and cubical decrease in methane concentration was observed with increasing dose of the PLS.Exp.2 revealed an increase in ruminal p H and ammonia concentrations,but no changes in total VFA concentration.Inclusion of PLS increased ruminal propionate(at 3 h and 6 h after feeding),isovalerate,and valerate concentrations.Addition of PLS also affected several populations of the analyzed microorganisms.The abundances of protozoa and bacteria were increased,whereas the abundance of archaea were decreased by PLS.Methane production decreased by 11%and 14%in PLS-fed cows compared to the control in Exp.2 and 3,respectively.Exp.3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows,but no effect on DMI and energy corrected milk yield.Also,the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15,conjugated linoleic acid,C18:1 trans-11 FA,polyunsaturated fatty acids(PUFA),and reduced n6/n3 ratio and saturated fatty acids(SFA)proportion in milk.The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased.Conclusions:The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA,including conjugated linoleic acid,and C18:1 trans-11 along with reduction of SFA.
基金financially supported by the University of Torbat Heydarieh.
文摘Milk thistle(Silybum marianum)is a crucial medicinal plant containing a large amount of oil.In the study,the changes in storage oil during seed germination and seedling transition from heterotrophic phases were investigated.The results showed that seed oil decreased from 19.53%to 0.88%on the 7th day of seedling development.Oil hydrolysis continued until the 4th day of germination with a low slope,but then increased the use of oils in seed germination end seedling growth metabolism.The results indicated that the quantitative changes in fatty acids,presented at lower amount,were relatively higher than dominant fatty acids.There were decreasing phenolic content in the developing seedlings,but overall,lowest level of total phenolic content can be attributed to the control(30.52 mg⋅100 g⋅Oil^(-1)).In contrast,the maximum peroxide value(2.58 meq⋅kg Oil^(-1))in the developing seedling was observed on the last day of the experiment.The results showed that there was a significant correlation between saturated fatty acid,unsaturated fatty acid,and lipase activity.However,the correlation between lipase activity and polyunsaturated fatty acids was significantly higher than between lipase activity and monounsaturated fatty acids(R^(2)=90%and R^(2)=77%,respectively).Therefore,the lipolysis process acts selectively in milk thistle oils.According to the results,C12:0 exhibits a greater impact on the early seedling growth rather than on the germination process and is one of the determining factors in the transition from heterotroph to autotroph.Also,it can be a marker for TAGs breakdown.
基金supported by the National Natural Science Foundation of China(31872362 and 32072688)the Agricultural Science and Technology Independent Innovation Fund Project of Jiangsu Province[CX(19)1006].
文摘Background:Lactic acid bacteria(LAB)participating in milk fermentation naturally release and enrich the fermented dairy product with a broad range of bioactive metabolites,which has numerous roles in the intestinal health-promot-ing of the consumer.However,information is lacking regarding the application prospect of LAB fermented milk in the animal industry.This study investigated the effects of lactic acid bacteria-fermented formula milk(LFM)on the growth performance,intestinal immunity,microbiota composition,and transcriptomic responses in weaned piglets.A total of 24 male weaned piglets were randomly divided into the control(CON)and LFM groups.Each group consisted of 6 replicates(cages)with 2 piglets per cage.Each piglet in the LFM group were supplemented with 80 mL LFM three times a day,while the CON group was treated with the same amount of drinking water.Results:LFM significantly increased the average daily gain of piglets over the entire 14 d(P<0.01)and the average daily feed intake from 7 to 14 d(P<0.05).Compared to the CON group,ileal goblet cell count,villus-crypt ratio,sIgA,and lactate concentrations in the LFM group were significantly increased(P<0.05).Transcriptomic analysis of ileal mucosa identified 487 differentially expressed genes(DEGs)between two groups.Especially,DEGs involved in the intestinal immune network for IgA production pathways,such as polymeric immunoglobulin receptor(PIGR),were significantly up-regulated(P<0.01)by LFM supplementation.Moreover,trefoil factor 2(TFF2)in the LFM group,one of the DEGs involved in the secretory function of goblet cells,was also significantly up-regulated(P<0.01).Sequenc-ing of the 16S rRNA gene of microbiota demonstrated that LFM led to selective enrichment of lactate-producing and short-chain fatty acid(SCFA)-producing bacteria in the ileum,such as an increase in the relative abundance of Entero-coccus(P=0.09)and Acetitomaculum(P<0.05).Conclusions:LFM can improve intestinal health and immune tolerance,thus enhancing the growth performance of weaned piglets.The changes in microbiota and metabolites induced by LFM might mediate the regulation of the secretory function of goblet cells.
基金Financially supported by the Danish Council for Independent Research,Technology and Production Sciences (Copenhagen K,Denmark)。
文摘Background Dietary fat is important for energy provision and immune function of lactating sows and their progeny.However,knowledge on the impact of fat on mammary transcription of lipogenic genes,de novo fat synthesis,and milk fatty acid(FA)output is sparse in sows.This study aimed to evaluate impacts of dietary fat levels and FA composition on these traits in sows.Forty second-parity sows(Danish Landrace×Yorkshire)were assigned to 1 of 5 dietary treatments from d 108 of gestation until weaning(d 28 of lactation):low-fat control diet(3%added animal fat);or 1 of 4 high-fat diets with 8%added fat:coconut oil(CO),fish oil(FO),sunflower oil(SO),or 4%octanoic acid plus 4%FO(OFO).Three approaches were taken to estimate de novo milk fat synthesis from glucose and body fat.Results Daily intake of FA was lowest in low-fat sows within fat levels(P<0.01)and in OFO and FO sows within highfat diets(P<0.01).Daily milk outputs of fat,FA,energy,and FA-derived carbon reflected to a large extent the intake of those.On average,estimates for de novo fat synthesis were 82 or 194 g/d from glucose according to method 1 or 2 and 255 g de novo+mobilized FA/d according to method 3.The low-fat diet increased mammary FAS expression(P<0.05)and de novo fat synthesis(method 1;P=0.13)within fat levels.The OFO diet increased de novo fat synthesis(method 1;P<0.05)and numerically upregulated mammary FAS expression compared to the other high-fat diets.Across diets,a daily intake of 440 g digestible FA minimized milk fat originating from glucose and mobilized body fat.Conclusions Sows fed diets with low-fat or octanoic acid,through upregulating FAS expression,increased mammary de novo fat synthesis whereas the milk FA output remained low in sows fed the low-fat diet or high-fat OFO or FO diets,indicating that dietary FA intake,dietary fat level,and body fat mobilization in concert determine de novo fat synthesis,amount and profiles of FA in milk.