期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Application of organic fertilizer for improving soybean production under acidic stress
1
作者 Putri Gita Lestari Ayu Oshin Yap Sinaga +2 位作者 David Septian Sumanto Marpaung Winati Nurhayu Indah Oktaviani 《Oil Crop Science》 CSCD 2024年第1期46-52,共7页
The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not... The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not only raises sustainability concerns but also contributes to soil acidity.Therefore,the use of organic fertilizer could offer a solution for addressing both issues related to soil acidity and sustainability.The purpose of this study was to investigate the manipulation of soil pH using organic fertilizer for soybean production under acidic stress.The planting medium,consisting of a mixture of topsoil,rice husk charcoal,and organic fertilizer(in a ratio of 2:1:1),was supplemented with 0.5 g of NPK fertilizer as a basal treatment in each planting medium.To regulate the soil acidity to pH 4,we added FeSO_(4) and allowed the mixture to incubate for 30 days.The results demonstrate that the application of three types of organic fertilizers chicken manure(P1),oil palm empty bunch fertilizer(P2),and vermicompost(P3)positively impacts the growth of three soybean varieties.The findings indicate that the application of P2 organic fertilizer can increase vegetative growth almost 50%in soybeans on acidic soil,including plant height,leaf count,and root length.Meanwhile,applying P3 organic fertilizer can boost reproductive growth responses in soybeans on acidic soil,such as pod number(from around 0-4 unit to 42-51 unit),grain number(from around 0-5 unit to 88-90 unit),and grain weight(from around 0-0.37 g to 12-25 g).Organic fertilizer has the potential to regulate soil pH,promoting higher yields of soybeans under acidic stress. 展开更多
关键词 Organic fertilizer acidic stress SOYBEAN Agriculture production
下载PDF
Effects of Lanthanum on Redox Systems in Plasma Membranes of Casuarina equisetifolia Seedlings Under Acid Rain Stress 被引量:8
2
作者 李裕红 严重玲 +3 位作者 刘景春 Mohammed Almasri 梁洁 张瑞锋 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第5期577-581,共5页
The effects of lanthanum on some redox system(PMRS) properties of the plasma membrane(PM) vesicles from Casuarina equisetifolia seedlings under artificial acid rain(pH 4.5)stress were studied. The results show tha... The effects of lanthanum on some redox system(PMRS) properties of the plasma membrane(PM) vesicles from Casuarina equisetifolia seedlings under artificial acid rain(pH 4.5)stress were studied. The results show that there are NADH oxidase and EDTA Fe 3+ reductase, and nitrate reductase in the seedling PM, and they have different responses to soaking seeds for 8 h in a series of LaCl 3 solution. The NADH oxidase activities and the Nitrate reductase activities can be stimulated when La 3+ concentrations is in the range of 50~200 mg·L -1 , but their activities are inhibited or fluctuate by the higher La 3+ concentrations. The EDTA Fe 3+ reductase activities can be stimulated by La 3+ concentrations in the range of 50~400 mg·L -1 . The research also revealed that La 3+ reduces the relative permeability of membranes and have the function in protecting membranes under acid rain stress by the way of inhibiting the leakage of electrolyte. 展开更多
关键词 ECOLOGY PM redox system LANTHANUM Casuarina equisetifolia acid rain stress rare earths
下载PDF
Effects of La^(3+) on ATPase Activities of Plasma Membrane Vesicles Isolated from Casuarina Equisetifolia Seedlings under Acid Rain Stress 被引量:6
3
作者 李裕红 严重玲 +3 位作者 刘景春 陈英华 胡俊 薛博 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第6期675-679,共5页
The effects of La^(3+) on the growth and the ATPases activities of plasma membrane(PM) vesicles isolated from Casuarina equisetifolia seedlings under artificial acid rain(pH 4.5) stress were studied. The results show ... The effects of La^(3+) on the growth and the ATPases activities of plasma membrane(PM) vesicles isolated from Casuarina equisetifolia seedlings under artificial acid rain(pH 4.5) stress were studied. The results show that the height, length of roots, fresh weight and PM H^+-ATPase activites of Casuarina equisetifolia seedlings increase by the treatments of soaking seeds in LaCl_3 solutions with lower concentrations, and those can reach their peak values by treating with 200 mg·L^(-1) La^(3+). However, in comparison with the CK, those are inhibited by the higher La^(3+) concentrations; PM Ca^(2+)-ATPase activity is inhibited with the treatments of La^(3+). The results also reveal that the H^+-ATPase activity and the growth of cell enlarge have a remarkable positive correlation, and La^(3+) activating H^+-ATPase can facilitate plant growth. La^(3+) also can alleviate cytosolic acidification of plant under acid rain stress and indirectly maintain the stability of intracellular environment. In order to resistant to acid rain and accelerate the growth of Casuarina equisetifolia, the suitable range of La^(3+) concentrations to soak seeds for 8 h is 50~200 mg·L^(-1). 展开更多
关键词 ECOLOGY PM ATPase LANTHANUM Casuarina equisetifolia acid rain stress rare earths
下载PDF
Accumulation of Rare Earth Elements in Spinach and Soil under Condition of Using REE and Acid Rain Stress 被引量:4
4
作者 严重玲 洪业汤 +3 位作者 林鹏 王世杰 李心清 梁洁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第2期132-138,共7页
The content and distribution characteristics of REE in spinach and soil under using REE and acid rain stress were studied by pot experiments. The results show that the content of REE is 0 527~0 696 (μg·g -... The content and distribution characteristics of REE in spinach and soil under using REE and acid rain stress were studied by pot experiments. The results show that the content of REE is 0 527~0 696 (μg·g -1 ) in the above ground portion of spinach, 2 668~3 003 (μg·g -1 ) in the under ground portion of spinach and 229 09~250 30 (μg·g -1 ) in the soil. With the acidity of acid rain increasing, the leaching of REE in plants and soil is strengthened and the amount of REE reduces with decreasing of pH value. After REE are used, though plants show the selective absorption to Ce group elements (especially spraying on leaves), regardless under acid rain stress or using REE or not, the distribution model of REE in the above ground and under ground portion of plants is basically the same with the control. Plants also follow the Oddo Harkins rule of the REE of distribution abundance, light rare earth elements is enriched, the minus of Eu is abnormal and admeasure of Ce is a rich model. The results show that REE in plants mainly come from soil and are affected by it. 展开更多
关键词 rare earths acid rain stress SPINACH SOIL
下载PDF
The Effect of Acid Stress Treatment on Viability and Membrane Fatty Acid Composition of Oenococcus oeni SD-2a 被引量:3
5
作者 ZHAO Wen-ying LI Hua +2 位作者 WANG Hua LI Zhong-chao WANG Ai-lian 《Agricultural Sciences in China》 CAS CSCD 2009年第3期311-316,共6页
To obtain ready-to-use wine malolactic starter cultures with high viability, the effects of acid stress treatments on the growth, inoculation viability, freeze-drying viability, and membrane fatty acid composition of ... To obtain ready-to-use wine malolactic starter cultures with high viability, the effects of acid stress treatments on the growth, inoculation viability, freeze-drying viability, and membrane fatty acid composition of the native Oenococcus oeni SD-2a strain were studied. The results showed that pH 3.5 and 3.2 adaptive treatments did not strongly decrease cell biomass but increased distinctly inoculation viability and freeze-drying viability. Concerning the membrane fatty acid composition, it was observed that acid stress conditions increased significantly the relative concentration of lactobacillic acid (C19cycl 1) and the unsaturated:saturated fatty acid ratio in cell membrane lipids. We assumed that acid-induced cross protective responses could be used in preparing ready-to-use O. oeni SD-2a malolactic starter cultures, and the accumulation of lactobacillic acid in the membrane of O. oeni SD-2a cells appears as an acid stress response mechanism, which might be related with the enhanced viability. 展开更多
关键词 Oenococcus oeni acid stress response membrane fatty acid composition
下载PDF
UV-Vis Spectroscopy Study on Interaction between Microperoxidase-11 and Pr Ion Under Acid Rain Stress 被引量:2
6
作者 吉红念 黄晓华 +1 位作者 周青 陆天虹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第5期541-546,共6页
Interaction between rare earth ion praseodymium (Pr(Ⅲ)) and MP11 with/without hydrogen ion (H +) in different media( aqueous, phosphate buffer, physiological condition) were studied by UV Vis spectroscopy. All the ... Interaction between rare earth ion praseodymium (Pr(Ⅲ)) and MP11 with/without hydrogen ion (H +) in different media( aqueous, phosphate buffer, physiological condition) were studied by UV Vis spectroscopy. All the results indicate that Pr(Ⅲ) interacts with MP11, increasing the non planarity of porphyrin periphery, leading MP11 to form two conformations when titrated by Pr(Ⅲ). Excessive Pr(Ⅲ) acts as a contaminant in living organism. H + and Pr(Ⅲ) have antagonistic effect on MP11, suggesting that at suitable concentration under physiological conditions, Pr(Ⅲ) can be used as biomodulator in protecting plants from acid rain stress or in rehabilitating the harm. 展开更多
关键词 rare earths PRASEODYMIUM MICROPEROXIDASE-11 UV-Vis spectroscopy acid rain stress antagonistic effect
下载PDF
Advanced Progress on Adaptive Stress Response of Oenococcus oeni 被引量:1
7
作者 Zhao Wen-ying Kang Zhen-kui 《Journal of Northeast Agricultural University(English Edition)》 CAS 2013年第1期91-96,共6页
Oenoccoccus oeni is an alcohol-tolerant, acidophilic lactic acid bacterium with its ability to perform malolactic fermentation in wine, which is of fundamental importance in oenology. As a representative of the wine b... Oenoccoccus oeni is an alcohol-tolerant, acidophilic lactic acid bacterium with its ability to perform malolactic fermentation in wine, which is of fundamental importance in oenology. As a representative of the wine bacterium with remarkable adaptability to the very harsh physicochemical conditions of wine, many studies were carded out for its applied interest and focused mainly on its stress response mechanisms of O. oeni. on both physiological and molecular levels. In this review, three main stress response mechanisms in O. oeni during culturing process were addressed. Of them, various solute transporters and secondary metabolic energy-generating systems were utilized to control the intracellular environment and the energetic status of O. oeni. The changes in cell membrane fatty acid composition profiles and synthesis of stress proteins, especially small heat shock proteins were required for active cell response to maintain membrane integrity and function under stress conditions. The study on stress response of O. oeni played an important role on culture bacteria selection, making inoculation culture and construction of other engineering bacteria. 展开更多
关键词 Oenococcus oeni stress response acid stress alcohol stress
下载PDF
Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress 被引量:5
8
作者 TIAN Qing-song WANG Shu-yan +3 位作者 DU Jian-cai WU Zhi-juan LI Xiao-quan HAN Bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第9期2097-2104,共8页
Reference genes, stably expressing in different tissues and cells, are commonly used as the references in expression analysis. Selecting the optimum reference gene is crucial to the success of experiments. In this stu... Reference genes, stably expressing in different tissues and cells, are commonly used as the references in expression analysis. Selecting the optimum reference gene is crucial to the success of experiments. In this study, the expression stabilities of nine common reference genes, including ACT2, 18 S r RNA, APRT, EF-1α, RNA POL II, TUBα, TUBβ, GAPDH and TLF of Agropyron mongolicum, were studied under drought condition. Among them, 18 S r RNA was found to be the most optimum reference gene under drought stress by the analyzing of ge Norm and Norm Finder software. Quantitative expression levels of P5 CS using 18 S r RNA as the reference gene, and proline contents under drought stress in A. mongolicum were further operated, and we found the expression level of P5 CS gene and proline content had a significantly positive relationship(R^2=0.7763, P〈0.05). This study established and validated 18 S r RNA as the reference genes in A. mongolicum under drought stress, providing a powerful tool for the quantitative expression analysis of drought genes in A. mongolicum. 展开更多
关键词 reference genes quantitative real-time PCR drought stress proline pyrroline-5-carboxylic acid synthetase Agropyron mongolicum
下载PDF
Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions 被引量:5
9
作者 Xiao-yan Zhang Ren-guo Song +2 位作者 Bin Sun Hai Lu Chao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期819-826,共8页
Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum al... Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration. 展开更多
关键词 aluminum alloys stress corrosion cracking susceptibility hydrogen embrittlement potential acid solutions alkaline solutions
下载PDF
Response of 14C-Salicylic Acid to Heat Stress After Being Fed to Leaves of Grape Plants
10
作者 LIUYue-ping HUANGWei-dong WANGLi-jun 《Agricultural Sciences in China》 CAS CSCD 2005年第2期106-112,共7页
An experiment was conducted to investigate the response of salicylic acid as a second messenger to the heat stress in grape plants. For this purpose, all leaves of grape (Vitis vinifera×V. labrussa L. cv. Jingxiu... An experiment was conducted to investigate the response of salicylic acid as a second messenger to the heat stress in grape plants. For this purpose, all leaves of grape (Vitis vinifera×V. labrussa L. cv. Jingxiu) plants were removed except the 3rd, 4th, 5th, 6th, and 7th ones. The 5th leaf was fed with C-SA, and the 4th and 6th leaves were exposed to high 14 temperature at 40±0.5°C. It was observed that more C-SA transported out from the 5th leaf and the distribution of C-SA 14 14 in each organ of plant altered in response to heat stress. The accumulation of C-SA in both the 4th and 6th leaves being 14 exposed to high temperature was at least three times higher than that in control. The distribution of C-SA in other distal 14 leaves (the 3rd and 7th leaf) decreased, but more C-SA accumulated in stems adjacent to the 4th or 6th leaf exposed to 14 high temperature. In addition, there was more C-SA being transported upwards or downwards while the 4th and 6th 14 leaves were exposed to high temperature respectively. Therefore, our results suggested that SA was closely involved in signal transduction of heat stress in grape plants. However, the ratio of C radioactivity assayed after SA being extracted 14 to that of direct assay with apparatus was more than 70%, which indicated about 30% C was lost or catabolized during 14 transportation. 展开更多
关键词 Grape plant Heat stress C-salicylic acid Response Leaf 14
下载PDF
Response of peroxidase and catalase to acid rain stress during seed germination of rice,wheat,and rape 被引量:4
11
作者 Lihong WANG Xiaohua HUANG Qing ZHOU 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2008年第3期364-369,共6页
Seed germination of plants with various acid-resis tance display different responses to acid rain.To understand the reason why such differences occur,the effects of sim ulated acid rain(pH 2.5-5.0)on the activities of... Seed germination of plants with various acid-resis tance display different responses to acid rain.To understand the reason why such differences occur,the effects of sim ulated acid rain(pH 2.5-5.0)on the activities of peroxidase(POD)and catalase(CAT)during sced ger-mination of rice(O.sativa),wheat(T.aestivurm),and rape(B.chinensis var.oleifera)were investigated.R cesults indi-cated that the maximum change in activities of CAT and POD by acid rain treatment with different acidity and time in relation to the referent treatment without acid rain,was in the order:rice(28.8%,31.7%)<wheat(34.7%,48.3%)<rape(79.3%,50.0%).The pH level for which the treatment with acid rain did not cause signif-cant difference(p<0.05)was in the order:rice(3.5)>wheat(4.0)>rape(5.0).Moreover,the change in activity of POD was higher than that of CAT,which showed that POD was more sensitive to acid rain stress than CAT.The difference in the ability of POD and CAT in removing free radicals was one reason why the germina-tion indexes of these three species behaved differently. 展开更多
关键词 acid rain stress RICE WHEAT RAPE germination peroxidase(POD) catalase(CAT)
原文传递
Phosphatidic acid plays key roles regulating plant development and stress responses 被引量:8
12
作者 Hong-Yan Yao Hong-Wei Xue 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第9期851-863,共13页
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an importan... Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants. 展开更多
关键词 PA ABA Phosphatidic acid plays key roles regulating plant development and stress responses
原文传递
The CONSTANS-like 4 transcription factor,AtCOL_4,positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis 被引量:23
13
作者 Ji-Hee Min Jung-Sung Chung +1 位作者 Kyeong-Hwan Lee Cheol Soo Kim 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第3期313-324,共12页
The precise roles of the B-box zinc finger family of transcription factors in plant stress are poorly understood.Functional analysis was performed on AtCOL4,an Arabidopsis thaliana L.CONSTANS-like 4 protein that is a ... The precise roles of the B-box zinc finger family of transcription factors in plant stress are poorly understood.Functional analysis was performed on AtCOL4,an Arabidopsis thaliana L.CONSTANS-like 4 protein that is a putative novel transcription factor,and which contains a predicted transcriptional activation domain.Analyses of an AtCOL4 promoter-b-glucuronidase(GUS) construct revealed substantial GUS activity in whole seedlings.The expression of AtCOL4 was strongly induced by abscisic acid(ABA),salt,and osmotic stress.Mutation in atcol4 resulted in increased sensitivity to ABA and salt stress during seed germination and the cotyledon greening process.In contrast,AtCOL4-overexpressing plants were less sensitive to ABA and salt stress compared to the wild type.Interestingly,in the presence of ABA or salt stress,the transcript levels of other ABA biosynthesis and stress-related genes were enhanced induction in AtCOL4-overexpressing and WT plants,rather than in the atcol4 mutant.Thus,AtCOL4 is involved in ABA and salt stress response through the ABA-dependent signaling pathway.Taken together,these findings provide compelling evidence that AtCOL4 is an important regulator for plant tolerance to abiotic stress.e 展开更多
关键词 Abscisic acid B-box zinc finger family transcription factor salt stress
原文传递
Efect of the Gad system on Actinobacillus succinogenes during acid stress
14
作者 Chunmei Chen Qun Zhang +3 位作者 Junzhu Qian Dan Wu Pengcheng Chen Pu Zheng 《Systems Microbiology and Biomanufacturing》 2022年第1期177-185,共9页
The glutamate decarboxylase(Gad)system is an important amino acid-dependent acid resistance system commonly found in microorganisms.Actinobacillus succinogenes is one of the best natural producers of succinic acid(SA)... The glutamate decarboxylase(Gad)system is an important amino acid-dependent acid resistance system commonly found in microorganisms.Actinobacillus succinogenes is one of the best natural producers of succinic acid(SA)but lacks glutamate decarboxylase.This study assessed the efects of Gad system introduction into A.succinogenes.The recombinant strains gadB-SW and gadBC-SW were constructed by heterologous expression of gadB alone,or gadB together with gadC,respectively.After 1.0 and 1.5 h of acid stress at pH 4.6,cell survival of gadBC-SW was greater than gadB-SW.The growth of gadB-SW and gadBC-SW was both afected by the expression of heterologous proteins and byγ-aminobutyric acid,with gadBC-SW growth reduced at a neutral pH.SA production in acidic conditions was evaluated by a shake fask and by 3-L bioreactor fermentation.The results showed gadBC-SW to increase SA production by 8.4%in shake fask compared to the parent strain,SW.For a 3-L bioreactor batch fermentation under acidic environment,the highest conversion rate of sugar to SA was observed for gadBC-SW,reaching 96%.However,SA concentration by gadBC-SW was only 47 g/L and 31 g/L at pH 6.5 and pH 6.0,respectively.In summary,the introduction of heterologous gadB and gadC into A.succinogenes not only improved acid tolerance but also infuenced the synthesis of SA and added a metabolic burden. 展开更多
关键词 Actinobacillus succinogenes Acid stress Glutamate decarboxylase Succinic acid GLUTAMATE
原文传递
Methionine addition improves the acid tolerance of Lactiplantibacillus plantarum by altering cellular metabolic flux,energy distribution,lipids composition
15
作者 Qiang Meng Yueyao Li +3 位作者 Yuxin Yuan Shaowen Wu Kan Shi Shuwen Liu 《Stress Biology》 2022年第1期109-119,共11页
This paper reported a wine-derived lactic acid bacterium,Lactiplantibacillus plantarum XJ25,which exhibited higher cell viability under acid stress upon methionine supplementation.Cellular morphology and the compositi... This paper reported a wine-derived lactic acid bacterium,Lactiplantibacillus plantarum XJ25,which exhibited higher cell viability under acid stress upon methionine supplementation.Cellular morphology and the composition of the cytomembrane phospholipids revealed a more solid membrane architecture presented in the acid-stressed cells treated with methionine supplementation.Transcriptional analysis showed L.plantarum XJ25 reduced methionine transport and homocysteine biosynthesis under acid stress.Subsequent overexpression assays proved that methio-nine supplementation could alleviate the cell toxicity from homocysteine accumulation under acid stress.Finally,L.plantarum XJ25 employed energy allocation strategy to response environmental changes by balancing the uptake methionine and adjusting saturated fatty acids(SFAs)in membrane.These data support a novel mechanism of acid resistance involving methionine utilization and cellular energy distribution in LAB and provide crucial theoretical clues for the mechanisms of acid resistance in other bacteria. 展开更多
关键词 Acid stress Lactiplantibacillus plantarum METHIONINE Cell viability Transcription level Membrane lipids
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部