期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Emulsion interfacial polymerization of anticancer peptides:fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity 被引量:1
1
作者 Jinpeng Yang Hua Wang +3 位作者 Zihe Yin Shuai Zhang Jiang-Fei Xu Xi Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2022年第11期2252-2259,共8页
The development of drug delivery systems with high drug-loading efficiency, kinetic stability against dilution, as well as enhanced anticancer activity is of crucial importance to the fields of self-assembly and nanom... The development of drug delivery systems with high drug-loading efficiency, kinetic stability against dilution, as well as enhanced anticancer activity is of crucial importance to the fields of self-assembly and nanomedicine. Herein, we propose a strategy where the anticancer peptide acts as water-soluble monomer to directly participate in emulsion interfacial polymerization for fabricating polypeptide nanospheres. The constructed polypeptide nanospheres hold a high drug loading efficiency of 77%, and can be stably dispersed in highly diluted aqueous solutions. The acid-labile amide linkage in polypeptide nanospheres can be hydrolyzed in tumor acidic environments, thus releasing anticancer peptides selectively. The polypeptide nanospheres achieve significantly enhanced anticancer activity against HCT116 cells in vitro and in vivo through improved mitochondrial and membrane disruption. In addition, its side effects on normal cells can be reduced significantly. It is highly anticipated that more kinds of anticancer drug candidates or anticancer drugs can be applied to fabricate polymeric nanomedicines with improved anticancer activity through this strategy. 展开更多
关键词 emulsion interfacial polymerization drug delivery anticancer peptide self-assembly acidity-responsive
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部