期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of deep alkaline and acidic fluids on reservoir developed in fault belt of saline lacustrine basin
1
作者 Lei-Lei Yang Xin-Wei Li +4 位作者 Guo Wei Yi-Dan Liu Qin-Gong Zhuo Zhi-Chao Yu Zhi-Ye Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期776-786,共11页
Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and... Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and transform the reservoir under complex fault conditions remain unclear. In this study, a 2D model was established based on a typical sub-salt to intra-salt vertical profile in the Qaidam Basin, China. Based on measured data, multiphase flow reaction and solute transport simulation technology were used to analyze fluids flow and migration in the intra-salt and sub-salt reservoirs, determine the mineral dissolution, precipitation, and transformation in the reservoir caused by the deep fluids, and calculate the changes in reservoir porosity. Results show that deep fluid migrates preferentially along dominant channels and triggers a series of fluid–rock chemical reactions. In the first stage, a large amount of anhydrite precipitated in the fault as a result of upward migration of deep saline fluid, resulting in the formation of anhydrite veins and blockage at the base of the fault. In the second stage, organic acids caused minerals dissolution and a vertical channel was opened in previously blocked area, which promoted continuous upward migration of organic acids and the formation of secondary pores. This study clarifies the transformative effects of deep alkaline and acidic fluids on the reservoir. Moreover, the important fluid transport role of faults and their effect on reservoir development were determined. 展开更多
关键词 Saline lacustrine basin Alkaline and acidic fluids Fault-belt reservoir Mineral transformation Physical conditions
下载PDF
Neural differentiation of choroid plexus epithelial cells:role of human traumatic cerebrospinal fluid 被引量:1
2
作者 Elham Hashemi Yousef Sadeghi +6 位作者 Abbas Aliaghaei Afsoun Seddighi Abbas Piryaei Mehdi Eskandarian Broujeni Fatemeh Shaerzadeh Abdollah Amini Ramin Pouriran 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期84-89,共6页
As the key producer of cerebrospinal fluid(CSF),the choroid plexus(CP) provides a unique protective system in the central nervous system.CSF components are not invariable and they can change based on the pathologi... As the key producer of cerebrospinal fluid(CSF),the choroid plexus(CP) provides a unique protective system in the central nervous system.CSF components are not invariable and they can change based on the pathological conditions of the central nervous system.The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells.CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF.Alterations in m RNA expression of Nestin and microtubule-associated protein(MAP2),as the specific markers of neurogenesis,and astrocyte marker glial fibrillary acidic protein(GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR.The data revealed that treatment with CSF(non-traumatic and traumatic) led to increase in m RNA expression levels of MAP2 and GFAP.Moreover,the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF,while treatment with traumatic CSF significantly increased its m RNA level compared to the cells cultured only in DMEM/F12 as control.It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions. 展开更多
关键词 nerve regeneration choroid plexus cerebrospinal fluid stem cells Nestin microtubule-associated protein 2 glial fibrillary acidic protein neurogenesis central nervous system neural regeneration
下载PDF
Exploration progress of the Paleogene in Jiyang Depression,Bohai Bay Basin
3
作者 Lichi Ma Mingshui Song +2 位作者 Yongshi Wang Yanguang Wang Huimin Liu 《Energy Geoscience》 2023年第1期42-50,共9页
With increased exploration in the faulted basins of eastern China,petroleum exploration in this region has been challenged by unclear remaining petroleum resources distribution,complex reservoir and hydrocarbon enrich... With increased exploration in the faulted basins of eastern China,petroleum exploration in this region has been challenged by unclear remaining petroleum resources distribution,complex reservoir and hydrocarbon enrichment patterns,and lacking of suitable exploration techniques.Aiming at resolving these problems,studies on source rocks,reservoirs,hydrocarbon accumulation and geophysical prospection were carried out by laboratory analysis,reservoir anatomy,and seismic analysis.A highlyefficient hydrocarbon generation/expulsion model of source rocks in saline environment was established,which aided in the discovery of a new set of source rocks in the Jiyang Depression.This study also reveals the formation process of high-quality reservoir by alternating acid and alkaline fluids during deposition and diagenesis,and pattern of secondary pores development in deep clastic rocks.Through the fine anatomy of the oil reservoirs,an orderly distribution pattern of the oil reservoirs is established,and the potential exploration targets in the undrilled area are identified.In addition,single-point highdensity seismic acquisition and high-resolution imaging technologies are developed,enabling fine and efficient exploration in areas with high exploration maturity.The research result plays a leading and demonstrative role in the fine and efficient exploration of faulted basins in eastern China. 展开更多
关键词 Hydrocarbon generation/expulsion model Saline environment Acid and alkaline fluids Hydrocarbon accumulation model Faulted basin
下载PDF
Altered microRNA expression profiles in a rat model of spina bifida 被引量:1
4
作者 Pan Qin Lin Li +5 位作者 Da Zhang Qiu-liang Liu Xin-rang Chen He-ying Yang Ying-zhong Fan Jia-xiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期502-507,共6页
Micro RNAs(mi RNAs) are dynamically regulated during neurodevelopment,yet few reports have examined their role in spina bifida.In this study,we used an established fetal rat model of spina bifida induced by intragas... Micro RNAs(mi RNAs) are dynamically regulated during neurodevelopment,yet few reports have examined their role in spina bifida.In this study,we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy.Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls.The mi RNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an mi RNA microarray assay.Compared with that in control fetuses,the expression of mi RNA-9,mi RNA-124 a,and mi RNA-138 was significantly decreased(〉 2-fold),whereas the expression of mi RNA-134 was significantly increased(〉 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida.These results were validated using real-time quantitative reverse-transcription polymerase chain reaction.Hierarchical clustering analysis of the microarray data showed that these differentially expressed mi RNAs could distinguish fetuses modeling spina bifida from control fetuses.Our bioinformatics analysis suggested that these differentially expressed mi RNAs were associated with many cytological pathways,including a nervous system development signaling pathway.These findings indicate that further studies are warranted examining the role of mi RNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida.Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. 展开更多
关键词 nerve regeneration spina bifida amniotic fluid all-trans retinoic acid microarray micro RNA reverse transcription-polymerase chain reaction MAPK neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部