The degradation rate of Volatile Fatty Acids (VFAs) produced predominantly in the acidogenesis stage is a key process parameter to be optimised to ensure a successful Anaerobic digestion (AD). Thermodynamically, the o...The degradation rate of Volatile Fatty Acids (VFAs) produced predominantly in the acidogenesis stage is a key process parameter to be optimised to ensure a successful Anaerobic digestion (AD). Thermodynamically, the oxidation of the VFAs are energetically unfavourable, and as such external energy source apart from the energy derived from the hydrolysis of Adenosine Triphosphate (ATP) is needed for the initial activation of the VFAs, initial growth of the methanogens in AD process and improved degradation rate of the VFAs. Thus, this research investigated the influence of polyphosphate hydrolysis on the degradation rate of the VFAs at high concentration. Sodium-propionate, Sodium-butyrate and Sodium-acetate salts were added at the start of experiments in order to increase the concentration of the VFAs. The polyphosphate salts used were;Na-hexametaphosphate, Na-tripolyphosphate and potassium pyrophosphate. The control experiment was polyphosphate free and three process parameters (degradation rate, cumulative biogas production and specific methane content) of anaerobic digestion were investigated. The experiments were carried out at a mesophilic temperature of 37.5°C for 41 days. The results of the investigation showed that the treated reactors with the polyphosphate salt solution in low concentration performed better than the reactors with high concentration of the polyphosphate salts solution. All the treated reactors with poly-P salts performed better than reactor Nr-9 (control experiment), but reactor Nr-1 was outstanding with an improved degradation rate of 47%, cumulative biogas production of 21% and specific methane content of 23%.展开更多
In the suspended sludge system, when pH and temperature were suitable and carbon source was not limited, the denitrification and C-uptake rate followed a zero-order reaction. Mixed VFA C-source had higher denitrificat...In the suspended sludge system, when pH and temperature were suitable and carbon source was not limited, the denitrification and C-uptake rate followed a zero-order reaction. Mixed VFA C-source had higher denitrification rate than single VFA C-source consisting of them. When VFA were used as carbon source, consumed carbon quantity for denitrification was closed to 1. 07 mg VFA-C/mg NO-N. About 20% of the applied C/N was used for assimilative purposes. As rising up influent C/N by increasing the C load ,the sludge yield YN increased. The part of carbon consumption increased and the effluent oxidized nitrogen decreased. At pH 7. 5, 25℃ and sludge yield 0.72 mg VSS/mg NO-N, the calculated influent VFA-C /NO critical value was 1. 43 for complete denitrification.展开更多
This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal c...This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment,and response surface method( RSM) is applied to optimize the conditions of the combination of ultrasonic and acid( UA) pretreatment. Results show that the optimal acid,ultrasonic and UA pretreatments conditions are individual pH 2,individual ultrasonic energy density of 1. 0 W / mL and the combination of ultrasonic energy density1. 11 W / mL and pH 1. 43,respectively. Correspondingly,the maximum disintegration degrees( DD) of 46. 90%,57. 38% and68. 83%are obtained by acid,ultrasonic and UA pretreatments,respectively. After optimizing pretreatment conditions,batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production( 976. 17 mg COD / gV S) and VFA / SCOD( 72. 89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non-pretreatment and acid pretreatment,respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production.展开更多
Mesophilic and thermophilic anaerobic fermentation performance of waste activated sludge(WAS)pretreated by enzymes catalysis associated with microbial community shifts were investigated.WAS disintegration was boosted ...Mesophilic and thermophilic anaerobic fermentation performance of waste activated sludge(WAS)pretreated by enzymes catalysis associated with microbial community shifts were investigated.WAS disintegration was boosted considerably by enzymolysis with 8750 mg/L of soluble COD release within 180 min.Mesophilic anaerobic fermentation(MAF)produced nearly equal VFA accumulation with over 3200 mg COD/L compared with that of thermophilic fermentation(TAF).Bacterial community consortia showed great shifting differences in dynamics of main T⁃RFs between MAF and TAF.Moreover,MAF was conducive to form intermediate bacterial community evenness compared to TAF,which preserved a robust function of VFA production.The enzymes catalysis prompted bio⁃energy(electricity)recovery potential of WAS organics via anaerobic fermentation(MAF/TAF)with evaluating electricity conversion efficiency of 0.75-0.82 kW·h/kg VSS(3.9 times higher than control test).Finally,this study proposed some novel thinking on future WAS treatment/management towards energy recovery coupled with energy⁃sufficient wastewater treatment by co⁃locating WAS anaerobic fermentation,MFC plant with wastewater treatment plant(s).展开更多
African breadfruit seeds were subjected to three processing methods—parboiling, cooking and toasting, and the raw was used as control. The purpose of this research was to extract the oil from the seed and to determin...African breadfruit seeds were subjected to three processing methods—parboiling, cooking and toasting, and the raw was used as control. The purpose of this research was to extract the oil from the seed and to determine the effect of processing on the oil for physicochemical properties and volatile fatty acid profile. Physicochemical properties showed that the colour of the oil varied from golden yellow to brownish yellow with specific gravity varying between 0.802 g/cm3 and 0.813 g/cm3. Percentage yield of oil was 6.14% for raw extract, 6.62% for parboiled extract, 7.56% for toasted extract, and 5.01% for cooked extract. Acid, peroxide and saponification value for oil extracted from the raw seed varied with the processed samples value. The Volatile Fatty Acid (VFA), also known as Short Chain Fatty Acid (SCFA) found inherent in varying concentration, were formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocarproic, hexanoic and heptanoic acid. Overall results prove that heat results in increases in the VFA concentration of the processed oil.展开更多
Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids...Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids (VFA) was proportional to the chemical oxygen demand (COD) loading rate.The yield of VFA was around 0.28 g VFA/g COD over the COD loading rate from 1.25 to 30 g COD·L -1 ·d -1 and the hydraulic retention time from 8.8 h to 24 h.Distribution of organic acids,the contents of propionic and butyric acids in the effluent in particular were also dependent on the COD loading rate.The thermophilic UASB reactor showed a stable performance on hydrolysis and acidogenesis of starch as well as suspended solid removal at short hydraulic retention times and high influent pH(10~11),during the operation of 110 d.展开更多
This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acido...This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.展开更多
The massive use of polyhexamethylene guanidine(PHMG),as a typical bactericidal agent,raised environmental concerns to the public.This work comprehensively revealed the hormesis effects of PHMG occurred in waste activa...The massive use of polyhexamethylene guanidine(PHMG),as a typical bactericidal agent,raised environmental concerns to the public.This work comprehensively revealed the hormesis effects of PHMG occurred in waste activated sludge(WAS)on the generation of volatile fatty acids(VFAs)during anaerobic fermentation.The low level of PHMG(100 mg/g TSS)significantly promoted the VFAs generation(1283 mg COD/L,compared with 337 mg COD/L in the control)via synchronously facilitating the solubilization,hydrolysis,and acidification steps but inhibiting methanogenesis.Metagenomic analysis showed that the functional anaerobe(i.e.,Bacteroides,Macellibacteroide and Parabacteroide)and corresponding genetic expressions responsible for extracellular hydrolysis(i.e.,clp P),membrane transport(i.e.,ffh and gsp F),intracellular substrates metabolism(i.e.,ald and paa F)and VFAs biosynthesis(i.e.,ACACA and FASN)were enhanced in the optimal presence of PHMG.Moreover,the anaerobic species could respond and adapt to low PHMG stimuli via quorum sensing(i.e.,cqs A,rpf C and rpf G),and thus maintain the high microbial metabolic activities.However,they were unable to tolerate the toxicity of excessive PHMG,resulting in the extremely low VFAs production.This work enlightened the effects of emerging pollutants on WAS fermentation at the genetic levels,and provided guidance on the WAS treatment and resource recovery.展开更多
The occurrence of the Maillard reaction and melanoidins formation during the hydrothermal treatment of food waste can reduce the yield of volatile fatty acids(VFA);however, few studies have investigated the adverse ef...The occurrence of the Maillard reaction and melanoidins formation during the hydrothermal treatment of food waste can reduce the yield of volatile fatty acids(VFA);however, few studies have investigated the adverse effects of the Maillard reaction. This study identified the impact of hydrothermal treatment parameters on hydrolysis and melanoidins formation and optimized the hydrothermal treatment conditions to enhance VFA production by minimizing the impact of the Maillard reaction. A response surface methodology was employed to optimize the hydrothermal treatment parameters and VFA production was evaluated. Results showed that temperature, reaction time, and pH were significant interacting factors with respect to hydrolysis and melanoidins formation while the C/N ratio and moisture content of food waste had little impact. The optimal conditions for hydrothermal treatment(temperature of 132 °C, reaction time of 27 min, and a pH of 5.6) enhanced VFA production by 22.1%. Under optimal hydrothermal treatment conditions, a higher initial C/N ratio further increased VFA production.展开更多
文摘The degradation rate of Volatile Fatty Acids (VFAs) produced predominantly in the acidogenesis stage is a key process parameter to be optimised to ensure a successful Anaerobic digestion (AD). Thermodynamically, the oxidation of the VFAs are energetically unfavourable, and as such external energy source apart from the energy derived from the hydrolysis of Adenosine Triphosphate (ATP) is needed for the initial activation of the VFAs, initial growth of the methanogens in AD process and improved degradation rate of the VFAs. Thus, this research investigated the influence of polyphosphate hydrolysis on the degradation rate of the VFAs at high concentration. Sodium-propionate, Sodium-butyrate and Sodium-acetate salts were added at the start of experiments in order to increase the concentration of the VFAs. The polyphosphate salts used were;Na-hexametaphosphate, Na-tripolyphosphate and potassium pyrophosphate. The control experiment was polyphosphate free and three process parameters (degradation rate, cumulative biogas production and specific methane content) of anaerobic digestion were investigated. The experiments were carried out at a mesophilic temperature of 37.5°C for 41 days. The results of the investigation showed that the treated reactors with the polyphosphate salt solution in low concentration performed better than the reactors with high concentration of the polyphosphate salts solution. All the treated reactors with poly-P salts performed better than reactor Nr-9 (control experiment), but reactor Nr-1 was outstanding with an improved degradation rate of 47%, cumulative biogas production of 21% and specific methane content of 23%.
文摘In the suspended sludge system, when pH and temperature were suitable and carbon source was not limited, the denitrification and C-uptake rate followed a zero-order reaction. Mixed VFA C-source had higher denitrification rate than single VFA C-source consisting of them. When VFA were used as carbon source, consumed carbon quantity for denitrification was closed to 1. 07 mg VFA-C/mg NO-N. About 20% of the applied C/N was used for assimilative purposes. As rising up influent C/N by increasing the C load ,the sludge yield YN increased. The part of carbon consumption increased and the effluent oxidized nitrogen decreased. At pH 7. 5, 25℃ and sludge yield 0.72 mg VSS/mg NO-N, the calculated influent VFA-C /NO critical value was 1. 43 for complete denitrification.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51008105 and 51121062)the State Key Laboratory of Urban Water Resource and Environment(Grant No.2014TS06)+1 种基金the Department of Education Fund for Doctoral Tutor(Grant No.20122302110054)the Special S&T Project on Treatment and Control of Water Pollution(Grant No.2013ZX07201007-001)
文摘This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste( FW)disintegration and volatile fatty acid( VFA) production. Single-factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment,and response surface method( RSM) is applied to optimize the conditions of the combination of ultrasonic and acid( UA) pretreatment. Results show that the optimal acid,ultrasonic and UA pretreatments conditions are individual pH 2,individual ultrasonic energy density of 1. 0 W / mL and the combination of ultrasonic energy density1. 11 W / mL and pH 1. 43,respectively. Correspondingly,the maximum disintegration degrees( DD) of 46. 90%,57. 38% and68. 83%are obtained by acid,ultrasonic and UA pretreatments,respectively. After optimizing pretreatment conditions,batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production( 976. 17 mg COD / gV S) and VFA / SCOD( 72. 89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non-pretreatment and acid pretreatment,respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production.
基金Sponsored by the Scientific Research Funds of Huaqiao University(Grant No.605-50Y18055).
文摘Mesophilic and thermophilic anaerobic fermentation performance of waste activated sludge(WAS)pretreated by enzymes catalysis associated with microbial community shifts were investigated.WAS disintegration was boosted considerably by enzymolysis with 8750 mg/L of soluble COD release within 180 min.Mesophilic anaerobic fermentation(MAF)produced nearly equal VFA accumulation with over 3200 mg COD/L compared with that of thermophilic fermentation(TAF).Bacterial community consortia showed great shifting differences in dynamics of main T⁃RFs between MAF and TAF.Moreover,MAF was conducive to form intermediate bacterial community evenness compared to TAF,which preserved a robust function of VFA production.The enzymes catalysis prompted bio⁃energy(electricity)recovery potential of WAS organics via anaerobic fermentation(MAF/TAF)with evaluating electricity conversion efficiency of 0.75-0.82 kW·h/kg VSS(3.9 times higher than control test).Finally,this study proposed some novel thinking on future WAS treatment/management towards energy recovery coupled with energy⁃sufficient wastewater treatment by co⁃locating WAS anaerobic fermentation,MFC plant with wastewater treatment plant(s).
文摘African breadfruit seeds were subjected to three processing methods—parboiling, cooking and toasting, and the raw was used as control. The purpose of this research was to extract the oil from the seed and to determine the effect of processing on the oil for physicochemical properties and volatile fatty acid profile. Physicochemical properties showed that the colour of the oil varied from golden yellow to brownish yellow with specific gravity varying between 0.802 g/cm3 and 0.813 g/cm3. Percentage yield of oil was 6.14% for raw extract, 6.62% for parboiled extract, 7.56% for toasted extract, and 5.01% for cooked extract. Acid, peroxide and saponification value for oil extracted from the raw seed varied with the processed samples value. The Volatile Fatty Acid (VFA), also known as Short Chain Fatty Acid (SCFA) found inherent in varying concentration, were formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocarproic, hexanoic and heptanoic acid. Overall results prove that heat results in increases in the VFA concentration of the processed oil.
文摘Acidogenic dissimilation of synthetic starch wastewater (1 000~10 000 mg COD·L -1 ) was studied in a thermophilic (55 ℃) upflow anaerobic sludge blanket (UASB) reactor.The production of volatile fatty acids (VFA) was proportional to the chemical oxygen demand (COD) loading rate.The yield of VFA was around 0.28 g VFA/g COD over the COD loading rate from 1.25 to 30 g COD·L -1 ·d -1 and the hydraulic retention time from 8.8 h to 24 h.Distribution of organic acids,the contents of propionic and butyric acids in the effluent in particular were also dependent on the COD loading rate.The thermophilic UASB reactor showed a stable performance on hydrolysis and acidogenesis of starch as well as suspended solid removal at short hydraulic retention times and high influent pH(10~11),during the operation of 110 d.
基金supported and administered by the Singapore National Research Foundation(NRF-CRP5-2009-2)
文摘This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.
基金financially supported by the National Natural Science Foundation of China(No.52070069)Jiangsu Province Natural Science Foundation(No.BK20211207)+3 种基金China Postdoctoral Science Foundation(No.2021M692423)Shanghai Post-doctoral Excellence Program(No.2020419)State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF20005)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘The massive use of polyhexamethylene guanidine(PHMG),as a typical bactericidal agent,raised environmental concerns to the public.This work comprehensively revealed the hormesis effects of PHMG occurred in waste activated sludge(WAS)on the generation of volatile fatty acids(VFAs)during anaerobic fermentation.The low level of PHMG(100 mg/g TSS)significantly promoted the VFAs generation(1283 mg COD/L,compared with 337 mg COD/L in the control)via synchronously facilitating the solubilization,hydrolysis,and acidification steps but inhibiting methanogenesis.Metagenomic analysis showed that the functional anaerobe(i.e.,Bacteroides,Macellibacteroide and Parabacteroide)and corresponding genetic expressions responsible for extracellular hydrolysis(i.e.,clp P),membrane transport(i.e.,ffh and gsp F),intracellular substrates metabolism(i.e.,ald and paa F)and VFAs biosynthesis(i.e.,ACACA and FASN)were enhanced in the optimal presence of PHMG.Moreover,the anaerobic species could respond and adapt to low PHMG stimuli via quorum sensing(i.e.,cqs A,rpf C and rpf G),and thus maintain the high microbial metabolic activities.However,they were unable to tolerate the toxicity of excessive PHMG,resulting in the extremely low VFAs production.This work enlightened the effects of emerging pollutants on WAS fermentation at the genetic levels,and provided guidance on the WAS treatment and resource recovery.
基金supported by the National Natural Science Foundation of China(Nos.51778580,51878611)the China Scholarship Council(No.iCET 2017)。
文摘The occurrence of the Maillard reaction and melanoidins formation during the hydrothermal treatment of food waste can reduce the yield of volatile fatty acids(VFA);however, few studies have investigated the adverse effects of the Maillard reaction. This study identified the impact of hydrothermal treatment parameters on hydrolysis and melanoidins formation and optimized the hydrothermal treatment conditions to enhance VFA production by minimizing the impact of the Maillard reaction. A response surface methodology was employed to optimize the hydrothermal treatment parameters and VFA production was evaluated. Results showed that temperature, reaction time, and pH were significant interacting factors with respect to hydrolysis and melanoidins formation while the C/N ratio and moisture content of food waste had little impact. The optimal conditions for hydrothermal treatment(temperature of 132 °C, reaction time of 27 min, and a pH of 5.6) enhanced VFA production by 22.1%. Under optimal hydrothermal treatment conditions, a higher initial C/N ratio further increased VFA production.