期刊文献+
共找到270,468篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of forsythin extract in Forsythia leaves on intestinal microbiota and short-chain fatty acids in rats fed a high-fat diet
1
作者 Lanlan Gui Shaokang Wang +6 位作者 Jing Wang Wang Liao Zitong Chen Da Pan Hui Xia Guiju Sun Su Tian 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期659-667,共9页
Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves o... Forsythia suspensa,belonging to the deciduous shrubs of the Luteaceae family,a traditional Chinese medicine,has effects of alleviating swelling,clearing heat,detoxification and promoting blood circulation.The leaves of F.suspensa contain multiple chemical components and have a long history of use in folk medicines and health foods.The purpose of this study was to explore the effects of forsythin extract from F.suspensa leaves on intestinal microbiota and short-chain fatty acid(SCFA)content in rats with obesity induced by a high-fat diet.Forsythin extract in F.suspensa leaves increased the abundance of the intestinal microbiota,ameliorated intestinal microbiota disorders and inhibited the increase in total SCFA content in the intestinal tract in rats with obesity induced by a high-fat diet.These results suggested that forsythin extract in F.suspensa leaves may slow the development of obesity induced by a high-fat diet;thus,its active components and efficacy are worthy of further study. 展开更多
关键词 FORSYTHIN High-fat diet Intestinal microbiota Short-chain fatty acid(scfa)
下载PDF
Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO_(2) into carboxylic acids 被引量:5
2
作者 Xiaofei Zhang Wenhuan Huang +4 位作者 Le Yu Max García-Melchor Dingsheng Wang Linjie Zhi Huabin Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期1-35,共35页
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c... The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs. 展开更多
关键词 carbon neutrality carboxylic acids CO_(2)conversion heterogeneous catalyst in situ technology
下载PDF
Bile acids,gut microbiota,and therapeutic insights in hepatocellular carcinoma 被引量:1
3
作者 Yang Song Harry CH Lau +1 位作者 Xiang Zhang Jun Yu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第2期144-162,共19页
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ... Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy. 展开更多
关键词 Bile acid gut microbiota hepatocellular carcinoma THERAPEUTICS microbiota modulation
下载PDF
Gut microbiota induced abnormal amino acids and their correlation with diabetic retinopathy 被引量:1
4
作者 Sheng-Qun Jiang Su-Na Ye +4 位作者 Yin-Hua Huang Yi-Wen Ou Ke-Yang Chen Jian-Su Chen Shi-Bo Tang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期883-895,共13页
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples... AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR. 展开更多
关键词 proliferative retinopathy gut microbiota Ruminococcaceae amino acid metabolism ARGININE
下载PDF
Effect of different drying methods on the amino acids,α-dicarbonyls and volatile compounds of rape bee pollen 被引量:1
5
作者 Yanxiang Bi Jiabao Ni +6 位作者 Xiaofeng Xue Zidan Zhou Wenli Tian Valérie Orsat Sha Yan Wenjun Peng Xiaoming Fang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期517-527,共11页
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ... The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process. 展开更多
关键词 DRYING Bee pollen Free amino acids α-Dicarbonyl compounds Volatile compounds
下载PDF
Milk fat globule membrane supplementation protects againstβ-lactoglobul-ininduced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner 被引量:1
6
作者 Han Gong Tiange Li +3 位作者 Dong Liang Jingxin Gao Xiaohan Liu Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期124-136,共13页
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ... Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA. 展开更多
关键词 Cow’s milk allergy Milk fat globule membrane Gut microbiota Short-chain fatty acid G protein-coupled receptor Regulatory T cell
下载PDF
Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism
7
作者 Liuyi Ren Bo Liu +5 位作者 Shenxu Bao Wei Ding Yimin Zhang Xiaochuan Hou Chao Lin Bo Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期518-530,共13页
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs... The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process. 展开更多
关键词 spent lithium-ion batteries LEACHING response surface methodology sulfuric acid citric acid
下载PDF
Bile acids inhibit ferroptosis sensitivity through activating farnesoid X receptor in gastric cancer cells
8
作者 Chu-Xuan Liu Ying Gao +10 位作者 Xiu-Fang Xu Xin Jin Yun Zhang Qian Xu Huan-Xin Ding Bing-Jun Li Fang-Ke Du Lin-Chuan Li Ming-Wei Zhong Jian-Kang Zhu Guang-Yong Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第5期485-498,共14页
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals... BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux. 展开更多
关键词 Gastric cancer Ferroptosis Bile acids Chenodeoxycholic acid Farnesoid X receptor GLUTATHIONE
下载PDF
Oleanolic acid improved intestinal immune function by activating and potentiating bile acids receptor signaling in E. coli-challenged piglets
9
作者 Chenyu Xue Hongpeng Jia +8 位作者 Rujing Cao Wenjie Cai Weichen Hong Jianing Tu Songtao Wang Qianzhi Jiang Chongpeng Bi Anshan Shan Na Dong 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2137-2155,共19页
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo... Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets. 展开更多
关键词 Bile acid receptors Enterotoxigenic Escherichia coli Intestinal innate immunity Oleanolic acid
下载PDF
Decoding the nexus:branched-chain amino acids and their connection with sleep,circadian rhythms,and cardiometabolic health
10
作者 Hui Li Laurent Seugnet 《Neural Regeneration Research》 SCIE CAS 2025年第5期1350-1363,共14页
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th... The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions. 展开更多
关键词 branched-chain amino acids cardiovascular health circadian clock DROSOPHILA INSULIN metabolism SLEEP γ-aminobutyric acid
下载PDF
Biomass-based production of trimellitic and trimesic acids
11
作者 Lin Yuan Yancheng Hu +6 位作者 Guangyi Li Fengan Han Aiqin Wang Yu Cong Tao Zhang Feng Wang Ning Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1267-1278,共12页
The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industr... The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions. 展开更多
关键词 BIOMASS Trimellitic acid Trimesic acid Deep eutectic solvent Dehydration/D-A reaction
下载PDF
Multi-Compartment SCFA Quantification in Human
12
作者 Jérémy Monteiro Antoine Lefèvre +6 位作者 Diane Dufour-Rainfray Adeline Oury Gabrielle Chicheri Laurent Galineau Hélène Blasco Lydie Nadal-Desbarats Patrick Emond 《American Journal of Analytical Chemistry》 CAS 2024年第6期177-200,共24页
Short-chain fatty acids (SCFA) play an important role in human biochemistry. They originate primarily from the digestive system through carbohydrates microbial fermentation. Most SCFA produced in the colon are absorbe... Short-chain fatty acids (SCFA) play an important role in human biochemistry. They originate primarily from the digestive system through carbohydrates microbial fermentation. Most SCFA produced in the colon are absorbed by the intestinal wall and enter the bloodstream to be distributed throughout the body for multiple purposes. At the intestinal level, SCFA play a role in controlling fat storage and fatty acid metabolism. The effects of these beneficial compounds therefore concern overall health. They facilitate energy expenditure and are valuable allies in the fight against obesity and diabetes. SCFA are also involved in the regulation of the levels of several neurotransmitters such as GABA (γ-aminobutyric acid), glutamate, serotonin, dopamine, and norepinephrine. Their role is also highlighted in many inflammatory and neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s disease (PD). To have a realistic picture of the distribution of SCFA in different biological compartments of the human body, we propose to study SCFA simultaneously in five human biological samples: feces, saliva, serum, cerebrospinal fluid (CSF), and urine, as well as in Dried Blood Spot (DBS). To evaluate their concentration and repeatability, we used 10 aliquots from pooled samples, analyzed by 3-nitrophenylhydrazine (3-NPH) derivation and liquid chromatography coupled with high sensitivity mass spectrometry (LC-QqQ-MS). We also evaluated the SCFA assay on Dried Blood Spot (DBS). In this work, we adapted the pre-analytical parts for each sample to be able to use a common calibration curve, thus facilitating multi-assay quantification studies and so being less time-consuming. Moreover, we proposed new daughter ions from the same neutral loss (43 Da) to quantify SCFAs, thus improving the sensitivity. In conclusion, our methodology, based on a unique calibration curve for all samples for each SCFA, is well-suited to quantified them in a clinical context. 展开更多
关键词 LC-MS 3-Nitrophenylhydrazine Short-Chain Fatty acids Human Biological Samples Quantification
下载PDF
香砂六君子汤对脾虚型IBS-D大鼠肠道菌群及其代谢产物SCFAs的调节作用
13
作者 张远哲 黎豫川 +2 位作者 杨元凤 陈礼大 罗玉玲 《中成药》 CAS CSCD 北大核心 2024年第1期272-277,共6页
目的探讨香砂六君子汤对脾虚证腹泻型肠易激综合征(IBS-D)大鼠肠道菌群及短链脂肪酸(SCFAs)的影响。方法大鼠随机分为对照组,模型组,香砂六君子汤低、中、高剂量组(0.145、0.29、0.58 g/mL),复合乳酸菌组。给予相应药物干预后,检测大鼠... 目的探讨香砂六君子汤对脾虚证腹泻型肠易激综合征(IBS-D)大鼠肠道菌群及短链脂肪酸(SCFAs)的影响。方法大鼠随机分为对照组,模型组,香砂六君子汤低、中、高剂量组(0.145、0.29、0.58 g/mL),复合乳酸菌组。给予相应药物干预后,检测大鼠粪便含水量、布里斯托大便分类法评分,AWR实验和炭末推进实验检测大鼠内脏敏感性和肠道运输速率,HE染色检测大鼠结肠病理改变,ELISA法检测大鼠外周血中5-HT水平,16S rRNA测序分析大鼠肠道菌群多样性和组间差异,GC-MS代谢组学评价大鼠粪便中SCFAs浓度。结果与模型组比较,香砂六君子汤各剂量组大鼠粪便含水量、布里斯托大便分类法评分、肠道敏感性、结肠推进率降低(P<0.05,P<0.01),结肠组织病理损伤减轻,血清5-HT水平降低(P<0.05,P<0.01),粪便SCFAs含量升高(P<0.05)。香砂六君子汤干预后,Chao1、Observed-Species、shannon指数降低,Goods-coverage指数升高,大鼠粪便中厚壁菌门、乳杆菌属、普雷沃菌属相对丰度升高,拟杆菌门相对丰度降低。结论香砂六君子汤可能通过调节肠道菌群平衡,从而促进SCFAs生成,缓解脾虚型IBS-D大鼠症状。 展开更多
关键词 香砂六君子汤 腹泻型肠易激综合征(IBS-D) 脾虚证 肠道菌群 16S rRNA scfas
下载PDF
Expression and clinical significance of short-chain fatty acids in patients with intrahepatic cholestasis of pregnancy
14
作者 Shuai-Jun Ren Jia-Ting Feng +3 位作者 Ting Xiang Cai-Lian Liao Yu-Ping Zhou Rong-Rong Xuan 《World Journal of Hepatology》 2024年第4期601-611,共11页
BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy.Short-chain fatty acids(SCFAs),prominent metabolites of the... BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy.Short-chain fatty acids(SCFAs),prominent metabolites of the gut microbiota,have significant connections with various pregnancy complications,and some SCFAs hold potential for treating such complications.However,the metabolic profile of SCFAs in patients with ICP remains unclear.AIM To investigate the metabolic profiles and differences in SCFAs present in the maternal and cord blood of patients with ICP and determine the clinical significance of these findings.METHODS Maternal serum and cord blood samples were collected from both patients with ICP(ICP group)and normal pregnant women(NP group).Targeted metabolomics was used to assess the SCFA levels in these samples.RESULTS Significant differences in maternal SCFAs were observed between the ICP and NP groups.Most SCFAs exhibited a consistent declining trend in cord blood samples from the ICP group,mirroring the pattern seen in maternal serum.Correlation analysis revealed a positive correlation between maternal serum SCFAs and cord blood SCFAs[r(Pearson)=0.88,P=7.93e-95].In both maternal serum and cord blood,acetic and caproic acids were identified as key metabolites contributing to the differences in SCFAs between the two groups(variable importance for the projection>1).Receiver operating characteristic analysis demonstrated that multiple SCFAs in maternal blood have excellent diagnostic capabilities for ICP,with caproic acid exhibiting the highest diagnostic efficacy(area under the curve=0.97).CONCLUSION Compared with the NP group,significant alterations were observed in the SCFAs of maternal serum and cord blood in the ICP group,although they displayed distinct patterns of change.Furthermore,the SCFA levels in maternal serum and cord blood were significantly positively correlated.Notably,certain maternal serum SCFAs,specifically caproic and acetic acids,demonstrated excellent diagnostic efficiency for ICP. 展开更多
关键词 Intrahepatic cholestasis of pregnancy Short-chain fatty acids Maternal serum Cord blood Caproic acid
下载PDF
Bioactivities,Mechanisms,Production,and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases
15
作者 Shuang Liu Shuo Yang +3 位作者 Biljana Blazekovic Lu Li Jidan Zhang Yi Wang 《Engineering》 SCIE EI CAS CSCD 2024年第7期13-26,共14页
Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common ... Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way. 展开更多
关键词 Bile acids Infectious diseases BIOACTIVITIES MECHANISMS Anti-infective agents
下载PDF
Standardized ileal digestibility of amino acids in soybean meal fed to non-pregnant and pregnant sows
16
作者 Ke Wang Ya Wang +11 位作者 Lei Guo Yong Zhuo Lun Hua Lianqiang Che Shengyu Xu Ruinan Zhang Jian Li Bin Feng Zhengfeng Fang Xuemei Jiang Yan Lin De Wu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期362-373,共12页
Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracte... Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracted SBMs from soybeans produced in the USA,Brazil,and China were selected.In Exp.1,eight different diets were created:a nitrogen(N)-free diet and 7 experimental diets containing SBM from different origins as the only N source.Eight non-pregnant,multiparous sows were arranged in an 8×8 Latin square design(8 periods and 8 diets).In Exp.2,the diet formula was the same as in Exp.1.Eight gestating sows(parity 3)were assigned to 4 different diets in a replicated 4×3 Youden square design(three periods and four diets)in mid-gestation and again in late-gestation stages.Results When fed to non-pregnant and late-gestating sows,the standardized ileal digestibility(SID)of CP and most AAs from different SBM were not significantly different(P>0.05).When fed to mid-gestating sows,the SID values for Arg,His,Lys,Phe,Cys,Gly,Ser,and Tyr in SBM 1 were lower than in SBM 4 and 5(P<0.05),whereas SID for Leu from SBM 5 was higher than in SBM 1 and 4(P<0.05).SID values for Ile,Ala,and Asp from SBM 4 were lower than in SBM 1 and 5(P<0.05).Sows had significantly greater SID values for Lys,Ala,and Asp during mid-gestation when compared with late-gestation stages(P<0.05).Mid-gestating sows had greater SID value for Val and lower SID value for Tyr when compared with non-pregnant and late-gestating sows(P<0.01),whereas non-pregnant sows had significantly greater SID value for Met when compared with gestating sows(P<0.01).Conclusions When fed to mid-gestating sows,the SID values for most AAs varied among SBM samples.The SID values for Lys,Met,Val,Ala,Asp,and Tyr in SBM were affected by sow gestation stages.Our findings provide a cornerstone for accurate SBM use in sow diets. 展开更多
关键词 Amino acids SOWS Soybean meal Standardized ileal digestibility
下载PDF
Electrolyte dependence for the electrochemical decarboxylation of medium-chain fatty acids (n-octanoic acid) into fuel on Pt electrode
17
作者 Zhenmin Zhang Dezhang Ren +5 位作者 Dian Zhang Tiantian Hu Congyuan Zeng Nengneng Xu Zhibao Huo Jinli Qiao 《Materials Reports(Energy)》 EI 2024年第2期64-70,共7页
The deoxygenation of organic acids, important biomass feedstocks and derivatives, to synthesize hydrocarbon products under mild electrochemical conditions, holds significant importance for the production of carbon-neu... The deoxygenation of organic acids, important biomass feedstocks and derivatives, to synthesize hydrocarbon products under mild electrochemical conditions, holds significant importance for the production of carbon-neutral biofuels. There is still limited research on the influential factors of the electrochemical decarboxylation reaction of medium-chain fatty acids. In this study, n-octanoic acid (OA) was chosen as the research subject to investigate the electrochemical decarboxylation behavior of OA on a platinum electrode, focusing on the influence of different alkali metal cations (Li^(+), Na^(+), K^(+)), common anions (SO^(4)^(2−), Cl^(−)), and electrolyte pH. It was found that KOH as an electrolyte exhibited the best performance for OA. Possibly, the larger size of K^(+) increased the alkalinity of the electrode surface, facilitating OA deprotonation. LiOH electrolyte reduced the solubility of OA, thereby inhibiting the decarboxylation reaction. SO^(4)^(2−) exhibited a weak promoting effect on the decarboxylation reaction of OA, while Cl^(−) showed no adverse effect although Cl^(−) may adsorb on the electrode surface. Furthermore, unlike short-chain fatty acids, medium-chain OA can only achieve efficient decarboxylation under alkaline conditions due to its solubility properties. This study provides references and foundations for future efforts to enhance the efficiency of electrochemical decarboxylation synthesis of hydrocarbon biofuels from medium-chain fatty acids. 展开更多
关键词 Fatty acids Kolbe reaction DECARBOXYLATION HYDROCARBON ELECTROLYTE
下载PDF
Maternal supplementation with n-3 fatty acids affects placental lipid metabolism, inflammation, oxidative stress, the endocannabinoid system, and the neonate cytokine concentrations in dairy cows
18
作者 Priscila dos Santos Silva Gitit Kra +3 位作者 Yana Butenko Jayasimha Rayalu Daddam Yishai Levin Maya Zachut 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2012-2030,共19页
Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO... Background The placenta plays a crucial role in supporting and influencing fetal development.We compared the effects of prepartum supplementation with omega-3(n-3)fatty acid(FA)sources,flaxseed oil(FLX)and fish oil(FO),on the expression of genes and proteins related to lipid metabolism,inflammation,oxidative stress,and the endocannabinoid system(ECS)in the expelled placenta,as well as on FA profile and inflammatory response of neonates.Late-pregnant Holstein dairy cows were supplemented with saturated fat(CTL),FLX,or FO.Placental cotyledons(n=5)were collected immediately after expulsion,and extracted RNA and proteins were analyzed by RTPCR and proteomic analysis.Neonatal blood was assessed for FA composition and concentrations of inflammatory markers.Results FO increased the gene expression of fatty acid binding protein 4(FABP4),interleukin 10(IL-10),catalase(CAT),cannabinoid receptor 1(CNR1),and cannabinoid receptor 2(CNR2)compared with CTL placenta.Gene expression of ECS-enzyme FA-amide hydrolase(FAAH)was lower in FLX and FO than in CTL.Proteomic analysis identified 3,974 proteins;of these,51–59 were differentially abundant between treatments(P≤0.05,|fold change|≥1.5).Top canonical pathways enriched in FLX vs.CTL and in FO vs.CTL were triglyceride metabolism and inflammatory processes.Both n-3 FA increased the placental abundance of FA binding proteins(FABPs)3 and 7.The abundance of CNR1 cannabinoid-receptor-interacting-protein-1(CNRIP1)was reduced in FO vs.FLX.In silico modeling affirmed that bovine FABPs bind to endocannabinoids.The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1,whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs.CTL placenta.Maternal FO enriched neonatal plasma with n-3 FAs,and both FLX and FO reduced interleukin-6 concentrations compared with CTL.Conclusion Maternal n-3 FA from FLX and FO differentially affected the bovine placenta;both enhanced lipid metabolism and modulated oxidative stress,however,FO increased some transcriptional ECS components,possibly related to the increased FABPs.Maternal FO induced a unique balance of pro-and anti-inflammatory components in the placenta.Taken together,different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes,which may affect the neonatal immune system. 展开更多
关键词 ANTIOXIDANTS Dairy cows Endocannabinoid system INFLAMMATION Omega-3 fatty acids PLACENTA
下载PDF
Abomasal infusion of branched-chain amino acids or branched-chain keto-acids alter lactation performance and liver triglycerides in fresh cows
19
作者 Kristen Gallagher Isabelle Bernstein +7 位作者 Cynthia Collings David Main Ghayyoor Ahmad Sarah Naughton Jayasimha Daddam Vengai Mavangira Mike Vandehaar Zheng Zhou 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1145-1157,共13页
Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)c... Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)concentra-tions whereas cows with high circulating BCAA levels have low liver triglyceride(TG).Our objective was to determine the impact of BCAA and their corresponding ketoacids(branched-chain ketoacids,BCKA)on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.Methods Thirty-six multiparous Holstein cows were used in a randomized block design experiment.Cows were abomasally infused for the first 21 d postpartum with solutions of 1)saline(CON,n=12);2)BCA(67 g valine,50 g leu-cine,and 34 g isoleucine,n=12);and 3)BCK(77 g 2-ketovaline calcium salt,57 g 2-ketoleucine calcium salt,and 39 g 2-ketoisoleucine calcium salt,n=12).All cows received the same diet.Treatment effects were determined using PROC GLIMMIX in SAS.Results No differences were detected for body weight,body condition score,or dry matter intake averaged over the first 21 d postpartum.Cows receiving BCK had significantly lower liver TG concentrations compared to CON(6.60%vs.4.77%,standard error of the mean(SEM)0.49)during the first 3 weeks of lactation.Infusion of BCA increased milk yield(39.5 vs.35.3 kg/d,SEM 1.8),milk fat yield(2.10 vs.1.69 kg/d,SEM 0.08),and lactose yield(2.11 vs.1.67 kg/d,SEM 0.07)compared with CON.Compared to CON,cows receiving BCA had lower plasma glucose(55.0 vs.59.2 mg/dL,SEM 0.86)but higherβ-hydroxybutyrate(9.17 vs.6.00 mg/dL,SEM 0.80).Conclusions Overall,BCAA supplementation in this study improved milk production,whereas BCKA supplementa-tion reduced TG accumulation in the liver of fresh cows. 展开更多
关键词 Branched-chain amino acids Branched-chain ketoacids Fatty liver Fresh cow
下载PDF
Targeting harmful effects of non-excitatory amino acids as an alternative therapeutic strategy to reduce ischemic damage
20
作者 Victoria Jiménez Carretero IrisÁlvarez-Merz +2 位作者 Jorge Hernández-Campano Sergei A.Kirov Jesús M.Hernández-Guijo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2454-2463,共10页
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ... The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury. 展开更多
关键词 cell swelling N-methyl-D-aspartate receptor non-excitatory amino acids STROKE synaptic transmission
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部