期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Broadband low-frequency acoustic absorber based on metaporous composite
1
作者 Jia-Hao Xu Xing-Feng Zhu +2 位作者 Di-Chao Chen QiWei Da-JianWu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期444-449,共6页
Broadband absorption of low-frequency sound waves via a deep subwavelength structure is of great and ongoing interest in research and engineering.Here,we numerically and experimentally present a design of a broadband ... Broadband absorption of low-frequency sound waves via a deep subwavelength structure is of great and ongoing interest in research and engineering.Here,we numerically and experimentally present a design of a broadband lowfrequency absorber based on an acoustic metaporous composite(AMC).The AMC absorber is constructed by embedding a single metamaterial resonator into a porous layer.The finite element simulations show that a high absorption(absorptance A>0.8)can be achieved within a broad frequency range(from 290 Hz to 1074 Hz),while the thickness of AMC is 1/13of the corresponding wavelength at 290 Hz.The broadband and high-efficiency performances of the absorber are attributed to the coupling between the two resonant absorptions and the trapped mode.The numerical simulations and experimental results are obtained to be in good agreement with each other.Moreover,the high broadband absorption can be maintained under random incident acoustic waves.The proposed absorber provides potential applications in low-frequency noise reduction especially when limited space is demanded. 展开更多
关键词 acoustic metamaterial low-frequency acoustic absorber BROADBAND metaporous
下载PDF
Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
2
作者 李澔翔 谭杨 +1 位作者 杨京 梁彬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期282-292,共11页
Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian m... Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian materials.In this work,we propose the theory of complex-coordinate transformation acoustics(CCTA)and verify the effectiveness in realizing acoustic non-Hermitian metamaterials.Especially,we apply this theory for the first time to the design of acoustic parity-time(PT)and antisymmetric parity-time(APT)metamaterials and demonstrate two distinctive examples.First,we use this method to obtain the exceptional points(EPs)of the PT/APT system and observe the spontaneous phase transition of the scattering matrix in the transformation parameter space.Second,by selecting the Jacobian matrix's constitutive parameters,the PT/APT-symmetric system can also be configured to approach the zero and pole of the scattering matrix,behaving as an acoustic coherent perfect absorber and equivalent laser.We envision our proposed CCTAbased paradigm to open the way for exploring the non-Hermitian physics and finding application in the design of acoustic functional devices such as absorbers and amplifiers whose material parameters are hard to realize by using the conventional transformation method. 展开更多
关键词 complex-coordinate transformation acoustics acoustic non-Hermitian metamaterials exceptional points acoustic coherent perfect absorber and equivalent laser
下载PDF
An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
3
作者 WANG Shuozhong (Shanghai University Shanghai 200072)Received 《Chinese Journal of Acoustics》 1997年第2期121-134,共14页
A highly efficient absorbing boundary condition suitable for use in the finitedtherence time-domain (FDTD) modelling of acoustic fields is presented in this paper. The new method seeks a least square esthoate of a tra... A highly efficient absorbing boundary condition suitable for use in the finitedtherence time-domain (FDTD) modelling of acoustic fields is presented in this paper. The new method seeks a least square esthoate of a transfer matrix for field components near truncating boundaries by matrir pseud-inversion. The proposed absorbing boundary is considerably more effective than most ekisting ones. The method is also computationally econondcal and robust.The performance of the new method is shown by numerical experiments on a point-source radiation problem, a wedge dimaction problem, and a scattering problem in which a plane wave is scattered by a circular cylinder. 展开更多
关键词 TIME An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部