期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel type of transverse surface wave propagating in a layered structure consisting of a piezoelectric layer attached to an elastic half-space 被引量:2
1
作者 Zhenghua Qian Feng Jin Sohichi Hirose 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期417-423,共7页
The existence and propagation of transverse surface waves in piezoelectric coupled solids is investigated, in which perfect bonding between a metal/dielectric substrate and a piezoelectric layer of finite-thickness is... The existence and propagation of transverse surface waves in piezoelectric coupled solids is investigated, in which perfect bonding between a metal/dielectric substrate and a piezoelectric layer of finite-thickness is assumed. Dis- persion equations relating phase velocity to material con- stants for the existence of various modes are obtained in a simple mathematical form for a piezoelectric material of class 6mm. It is discovered and proved by numerical examples in this paper that a novel Bleustein-Gulyaev (B-G) type of transverse surface wave can exist in such piezoelectric cou- pled solid media when the bulk-shear-wave velocity in the substrate is less than that in the piezoelectric layer but greater than the corresponding B-G wave velocity in the same pie- zoelectric material with an electroded surface. Such a wave does not exist in such layered structures in the absence of pie- zoelectricity. The mode shapes for displacement and electric potential in the piezoelectric layer are obtained and discussed theoretically. The study extends the regime of transverse sur- face waves and may lead to potential applications to surface acoustic wave devices. 展开更多
关键词 Transverse surface wave Piezoelectric coupled solids - dispersion relationSurface acoustic wave devices
下载PDF
First principles study and comparison of vibrational and thermodynamic properties of XBi(X=In,Ga,B,Al)
2
作者 Raheleh Pilevar Shahri Arsalan Akhtar 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期155-159,共5页
In the present work, vibrational and thermodynamic properties of XBi(X = B, Al, Ga, In) compounds are compared and investigated. The calculation is carried out using density functional theory(DFT) within the gener... In the present work, vibrational and thermodynamic properties of XBi(X = B, Al, Ga, In) compounds are compared and investigated. The calculation is carried out using density functional theory(DFT) within the generalized gradient approximation(GGA) in a plane wave basis, with ultrasoft pseudopotentials. The lattice dynamical properties are calculated using density functional perturbation theory(DFPT) as implemented in Quantum ESPRESSO(QE) code. Thermodynamic properties involving phonon density of states(DOS) and specific heat at constant volume are investigated using quasiharmonic approximation(QHA) package within QE. The phonon dispersion diagrams for InBi, GaBi, BBi, and AlBi indicate that there is no imaginary phonon frequency in the entire Brillouin zone, which proves the dynamical stability of these materials. BBi has the highest thermal conductivity and InBi has the lowest thermal conductivity. AlBi has the largest and GaBi has the smallest reststrahlen band which somehow suggests the polar property of XBi materials. The phonon gaps for InBi, GaBi, BBi and AlBi are about 160 cm^-1, 150 cm^-1, 300 cm^-1, and 150 cm^-1, respectively. For all compounds,the three acoustic modes near the gamma point have a linear behavior. C_V is a function of T-3 at low temperatures while for higher temperatures it asymptotically tends to a constant as expected. 展开更多
关键词 phonon dispersion reststrahlen band acoustic modes optical modes specific heat
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部