The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution an...The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution and characteristic stress under uniaxial compression using the acoustic emission(AE),digital image correlation(DIC),and nuclear magnetic resonance(NMR)measurements.The experimental results show that the characteristic stress of each granite decreased considerably with increasing grain sizes.The inflection points of the b-value occurred earlier with an increase in grain sizes,indicating that the larger grains promote the generation and propagation of microcracks.The distribution characteristics of the average frequency(AF)and the ratio of rise time to amplitude(RA)indicate that the proportion of shear microcracks increases with increasing grain size.The NMR results indicate that the porosity and the proportion of large pores increased with increasing grain size,which may intensify the microcrack evolution.Moreover,analysis of the DIC and AE event rates suggests that the high-displacement regions could serve as a criterion for the degree of microcrack propagation.The study found that granites with larger grains had a higher proportion of high-displacement regions,which can lead to larger-scale cracking or even spalling.These findings are not only beneficial to understand the pattern of microcrack evolution with different grain sizes,but also provide guidance for rock monitoring and instability assessment.展开更多
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le...The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.展开更多
Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is n...Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.展开更多
The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bambo...The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bamboo scrimber,bamboo plywood and SPF(Spruce-pine-fir)dimension lumber)during four-point loading tests were compared.The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis.Results showed that the bending strength of bamboo scrimber was 3.6 times that of bam-boo plywood and 2.7 times that of SPF dimension lumber,respectively.Due to the high strength and toughness of bamboo,the AE signals of the two bamboo products were more abundant than those of SPF dimension lumber.However,the AE evolution trend of the three materials was similar,which all experienced three stages,including gentle period,steady period and steep period,and the area of rupture precursor characteristics could be recognized before the specimen destroyed.Due to the bottom layer was first tensile failure,the main structure of bamboo plywood was destroyed after the stress redistribution.The rupture precursor characteristics could be observed before each peak.Findings put in evidence a good correlation between AE clusters of two bamboo products,while the amplitude and energy of wood signals were lower than those of bamboo.The amplitude and energy from the propagation and aggregation of cracks were greater than those related to micro-cracks initiation.展开更多
Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and dama...Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and damage characteristics are discussed. AE energy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.展开更多
As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from d...As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from depths of 101.5,203.2,317.3,406.9,509.9 and 589.8 m at the Buertai Coal Mine were collected.The characteristic strength,acoustic emission(AE),and energy evolution of sandstone during uniaxial compression tests were analyzed.The results show that the intermediate frequency(125-275 kHz)of shallow rock mainly occurs in the postpeak stage,while deep rock occurs in the prepeak stage.The initiation strength and damage strength of the sandstone at different depths range from 0.23 to 0.50 and 0.63 to 0.84 of peak strength(σ_(c)),respectively,decrease exponentially and are a power function with depth.The precursor strength ranges from 0.88σ_(c)to 0.99σ_(c),increases with depth before reaching a depth of 300 m,and tends to stabilize after 300 m.The ratio of the initiation strength to the damage strength(k)ranges from 0.25 to 0.62 and decreases exponentially with depth.The failure modes of sandstone at different depths are tension-dominated mixed tensile-shear failure.Shear failure mainly occurs at the unstable crack propagation stage.The count of the shear failure bands before the peak strength increases gradually,and increases first and then decreases after the peak strength with burial depth.The cumulative input energy,released elastic energy and dissipated energy increase with depth.The elastic release rate ranges from 0.46×10^(-3)to 198.57×10^(-3)J/(cm^(3)s)and increases exponentially with depth.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be use...A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.展开更多
By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities ...By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.展开更多
Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this ...Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.展开更多
The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressur...The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressures.The mechanical properties and failure process of coal were studied,as well as the acoustic emission(AE)and strain energy.The influence of gas pressure on the mechanical parameters of this coal was analyzed.Based on the conventional energy calculation formula,the pore pressure was introduced through the effective stress formula,and each energy component of coal containing gas was refined innovatively.The contribution of gas pressure to the total energy input and dissipation during loading was quantitatively described.Finally,the influence of gas pressure on coal strength was theo-retically analyzed from the perspectives of MohreCoulomb criterion and fracture mechanics.The results show that the total absorbed energy comprises the absorbed energy in the axial pressure direction(positive)and in the confining pressure direction(negative),as well as that induced by the pore pressure(initially negative and then positive).The absorbed energy in the axial pressure direction accounts for the main proportion of the total energy absorbed by coal.The quiet period of AE in the initial stage shortens,and AE activity increases during the pre-peak stage under high gas pressure.The fractal characteristics of AE in three stages are studied using the correlation dimension.The AE process has different forms of self-similarity in various deformation stages.展开更多
Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination a...Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior,energy dissipation characteristics and crack development of backfill.P-wave velocity,uniaxial compression,scanning electron microscope(SEM),and acoustic emission(AE)experiments were conducted.The results indicate that:(1)The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle,respectively;the strength,delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship,which can realize the rapid prediction of strength.(2)The microstructure of the delaminated surface is looser than that of the matrix,leading to a decrease in strength and an increase at the pore-fissure compaction stage.The number and angle of delamination increase linearly with the anisotropy coefficient.(3)The energy evolution in angle-cut backfill can be divided into four stages,with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle.(4)Crack development increases with the number of delamination surface and delamination angle,resulting in a decrease in energy dissipation coefficient and peak AE energy.These findings provide valuable insights for the design of filling materials and processes in mining operations.展开更多
The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock insta...The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering.展开更多
Rockburst occurred frequently during deep mining in China. The mechanism of rockburst is very complicated and related to many factors. In order to investigate the influence of moisture contents of rockmass on rockburs...Rockburst occurred frequently during deep mining in China. The mechanism of rockburst is very complicated and related to many factors. In order to investigate the influence of moisture contents of rockmass on rockburst, we conducted a series of laboratory rockburst experiments of sandstone under three different moisture contents by the Modified True-Triaxial Apparatus (MTTA),in which the acoustic emission (AE) system was employed to monitor the internal damage of rock mass. A high-speed video camera was utilized to record the detail of rockburst. Based on the experimental results, the AE characteristics, such as AE count,AE energy, and AE frequency, were analyzed. The rockburst process, type, and indensity under different moisture contents were discussed. The research results show that with the increase of moisture contents, rock strength was soften, the elastic and the cumulative damage of the rock were reduced, resulting in a gradual decrease in AE cumulative counts and cumulative energy over the course of rockburst. This study provides an experimental basis and reference for better understanding to the rockburst mechanism and control.展开更多
Aiming to investigate the fatigue damage mechanism and bearing characteristics of multi-pillar system under cyclic loading,a series of axial cyclic loading tests with different cyclic amplitudes were carried out on tr...Aiming to investigate the fatigue damage mechanism and bearing characteristics of multi-pillar system under cyclic loading,a series of axial cyclic loading tests with different cyclic amplitudes were carried out on triple-pillar marble specimens.The acoustic emission(AE)and digital image correlation(DIC)were jointly applied to monitoring and recording damage evolution and failure behavior of each pillar,which reproduced the cataclysmic instability process of underground pillar groups.Experimental results indicated that the cyclic amplitude exceeding the threshold of damage initiation weakened the resistance to deformation,resulting in obvious release of dissipated energy and the reduction of bearing capacity.Conversely,after low-amplitude cyclic loading,both the pre-peak bearing capacity and the post-peak ductility of the pillar system increased due to the compaction of initial defects,indicating that the peak bearing capacity was closely related to the extent of pre-peak fatigue damage.The axial strain of each pillar was measured by DIC virtual extensometer to present the damage extent during cyclic loading phase.Meanwhile,fracture evolution of typical load drop points was also characterized by transverse strain fields(εxx),and observations showed that the damage extent of key pillar undergoing high-amplitude cyclic loads was more serious and violent,accompanied by the ejection of rock debris and loud noises.展开更多
To solve the problem of corrosion acoustic emission (AE) source feature extraction and recognition, the AE detection validation and the amplitude-frequency characteristics were derived in theory. The amplitude of AE...To solve the problem of corrosion acoustic emission (AE) source feature extraction and recognition, the AE detection validation and the amplitude-frequency characteristics were derived in theory. The amplitude of AE signal generated by bubble burst is proportional to its radius square and the liquid level, while the AE signal frequency is inversely proportional to the bubble radius. The AE signal amplitude of the steel and the steel corrosion product cracking is proportional to the local stress, and the AE signal frequency is proportional to the crack propagation velocity and inversely proportional to the crack propagation distance. Three Q235 specimens were separately immersed in the solution of 10% FeC13.6H20, 5% CuSOa.5H20 and 10% FeC13.6H20 with 0.01 mol/L HCL. The AE systems with high frequency and low frequency were used to detect the whole corrosion process AE signals. The AE signals of Q235 steel and the steel corrosion products cracking were detected as the verification experiment. The AE signals from different sources could be distinguished by AE hits count and the power spectrum. It is coincident with theoretical analysis. These conclusions have significant guidance for the corrosion detection and evaluation by on-line acoustic emission detecting.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51927808,11972378 and 52174098).
文摘The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution and characteristic stress under uniaxial compression using the acoustic emission(AE),digital image correlation(DIC),and nuclear magnetic resonance(NMR)measurements.The experimental results show that the characteristic stress of each granite decreased considerably with increasing grain sizes.The inflection points of the b-value occurred earlier with an increase in grain sizes,indicating that the larger grains promote the generation and propagation of microcracks.The distribution characteristics of the average frequency(AF)and the ratio of rise time to amplitude(RA)indicate that the proportion of shear microcracks increases with increasing grain size.The NMR results indicate that the porosity and the proportion of large pores increased with increasing grain size,which may intensify the microcrack evolution.Moreover,analysis of the DIC and AE event rates suggests that the high-displacement regions could serve as a criterion for the degree of microcrack propagation.The study found that granites with larger grains had a higher proportion of high-displacement regions,which can lead to larger-scale cracking or even spalling.These findings are not only beneficial to understand the pattern of microcrack evolution with different grain sizes,but also provide guidance for rock monitoring and instability assessment.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2900500)the International(Regional)Cooperation and Exchange Program of National Natural Science Foundation of China(Grant No.52161135301)the Special Fund for Basic Scientific Research Operations in Universities(Grant No.2282020cxqd055).
文摘The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.
基金Projects(51204206,41272304,41372278) supported by the National Natural Science Foundation of ChinaProject(20110162120057) supported by Ph D Program Foundation of Ministry of Education ChinaProject(201012200232) supported by the Freedom Explore Program of Central South University,China
文摘Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.
基金This paper was supported in part by Project funded by the National Natural Science Foundation of China(Grant Nos.32071700 and 31570559).
文摘The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bamboo scrimber,bamboo plywood and SPF(Spruce-pine-fir)dimension lumber)during four-point loading tests were compared.The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis.Results showed that the bending strength of bamboo scrimber was 3.6 times that of bam-boo plywood and 2.7 times that of SPF dimension lumber,respectively.Due to the high strength and toughness of bamboo,the AE signals of the two bamboo products were more abundant than those of SPF dimension lumber.However,the AE evolution trend of the three materials was similar,which all experienced three stages,including gentle period,steady period and steep period,and the area of rupture precursor characteristics could be recognized before the specimen destroyed.Due to the bottom layer was first tensile failure,the main structure of bamboo plywood was destroyed after the stress redistribution.The rupture precursor characteristics could be observed before each peak.Findings put in evidence a good correlation between AE clusters of two bamboo products,while the amplitude and energy of wood signals were lower than those of bamboo.The amplitude and energy from the propagation and aggregation of cracks were greater than those related to micro-cracks initiation.
基金Sponsored by the National Natural Science Foundation of China(10772027,10602080)
文摘Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and damage characteristics are discussed. AE energy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1910206,51874312,51861145403)Science and Technology Project of Inner Mongolia Autonomous Region(No.2019GG140)Major Scientific and Technological Innovation Project of Shandong Province(Nos.2019SDZY01,2019SDZY02).These sources of supports are gratefully acknowledged.
文摘As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from depths of 101.5,203.2,317.3,406.9,509.9 and 589.8 m at the Buertai Coal Mine were collected.The characteristic strength,acoustic emission(AE),and energy evolution of sandstone during uniaxial compression tests were analyzed.The results show that the intermediate frequency(125-275 kHz)of shallow rock mainly occurs in the postpeak stage,while deep rock occurs in the prepeak stage.The initiation strength and damage strength of the sandstone at different depths range from 0.23 to 0.50 and 0.63 to 0.84 of peak strength(σ_(c)),respectively,decrease exponentially and are a power function with depth.The precursor strength ranges from 0.88σ_(c)to 0.99σ_(c),increases with depth before reaching a depth of 300 m,and tends to stabilize after 300 m.The ratio of the initiation strength to the damage strength(k)ranges from 0.25 to 0.62 and decreases exponentially with depth.The failure modes of sandstone at different depths are tension-dominated mixed tensile-shear failure.Shear failure mainly occurs at the unstable crack propagation stage.The count of the shear failure bands before the peak strength increases gradually,and increases first and then decreases after the peak strength with burial depth.The cumulative input energy,released elastic energy and dissipated energy increase with depth.The elastic release rate ranges from 0.46×10^(-3)to 198.57×10^(-3)J/(cm^(3)s)and increases exponentially with depth.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
基金the Fundamental Research Foundation of Harbin Engineering University, (grant number HEUF 04017)
文摘A type of combined optical fiber interferometric acoustic emission sensor is proposed. The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure. Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy. PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid. The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of interferometer and using Fourier transform technique. The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.
文摘By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.
基金the National Natural Science Foundation of China(Nos.U21A20108,52322403,52174108,and 51974105)the Support Plan for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT024)+1 种基金the Scientific and technological innovation research team of Henan Polytechnic University(No.T2021-5)the Henan Excellent Youth Science Foundation(No.222300420045).
文摘Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.
基金This study is sponsored by the National Natural Science Foun-dation of China(Grant No.12002270)the China Postdoctoral Science Foundation(Grant Nos.2021T140553 and 2021M692600).
文摘The mechanical behavior of coal is the key factor affecting underground coal mining and coalbed methane extraction.In this study,triaxial compression and seepage tests were carried out on coal at different gas pressures.The mechanical properties and failure process of coal were studied,as well as the acoustic emission(AE)and strain energy.The influence of gas pressure on the mechanical parameters of this coal was analyzed.Based on the conventional energy calculation formula,the pore pressure was introduced through the effective stress formula,and each energy component of coal containing gas was refined innovatively.The contribution of gas pressure to the total energy input and dissipation during loading was quantitatively described.Finally,the influence of gas pressure on coal strength was theo-retically analyzed from the perspectives of MohreCoulomb criterion and fracture mechanics.The results show that the total absorbed energy comprises the absorbed energy in the axial pressure direction(positive)and in the confining pressure direction(negative),as well as that induced by the pore pressure(initially negative and then positive).The absorbed energy in the axial pressure direction accounts for the main proportion of the total energy absorbed by coal.The quiet period of AE in the initial stage shortens,and AE activity increases during the pre-peak stage under high gas pressure.The fractal characteristics of AE in three stages are studied using the correlation dimension.The AE process has different forms of self-similarity in various deformation stages.
文摘Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior,energy dissipation characteristics and crack development of backfill.P-wave velocity,uniaxial compression,scanning electron microscope(SEM),and acoustic emission(AE)experiments were conducted.The results indicate that:(1)The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle,respectively;the strength,delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship,which can realize the rapid prediction of strength.(2)The microstructure of the delaminated surface is looser than that of the matrix,leading to a decrease in strength and an increase at the pore-fissure compaction stage.The number and angle of delamination increase linearly with the anisotropy coefficient.(3)The energy evolution in angle-cut backfill can be divided into four stages,with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle.(4)Crack development increases with the number of delamination surface and delamination angle,resulting in a decrease in energy dissipation coefficient and peak AE energy.These findings provide valuable insights for the design of filling materials and processes in mining operations.
基金the financial support from the Fundamental Research Funds for the Central Universities(No.2282020cxqd055)the National Science Foundation for Excellent Young Scholars of China(No.51822407)+1 种基金the Natural Science Foundation of China(Nos.51774327 and 51504288)the Fundamental Research Funds for the Central Universities of Central South University(No.2021zzts0862)。
文摘The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51374214 , 51134005 & 51574248)the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Rockburst occurred frequently during deep mining in China. The mechanism of rockburst is very complicated and related to many factors. In order to investigate the influence of moisture contents of rockmass on rockburst, we conducted a series of laboratory rockburst experiments of sandstone under three different moisture contents by the Modified True-Triaxial Apparatus (MTTA),in which the acoustic emission (AE) system was employed to monitor the internal damage of rock mass. A high-speed video camera was utilized to record the detail of rockburst. Based on the experimental results, the AE characteristics, such as AE count,AE energy, and AE frequency, were analyzed. The rockburst process, type, and indensity under different moisture contents were discussed. The research results show that with the increase of moisture contents, rock strength was soften, the elastic and the cumulative damage of the rock were reduced, resulting in a gradual decrease in AE cumulative counts and cumulative energy over the course of rockburst. This study provides an experimental basis and reference for better understanding to the rockburst mechanism and control.
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject(41772313)supported by the National Natural Science Foundation of ChinaProject(2017zzts185)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming to investigate the fatigue damage mechanism and bearing characteristics of multi-pillar system under cyclic loading,a series of axial cyclic loading tests with different cyclic amplitudes were carried out on triple-pillar marble specimens.The acoustic emission(AE)and digital image correlation(DIC)were jointly applied to monitoring and recording damage evolution and failure behavior of each pillar,which reproduced the cataclysmic instability process of underground pillar groups.Experimental results indicated that the cyclic amplitude exceeding the threshold of damage initiation weakened the resistance to deformation,resulting in obvious release of dissipated energy and the reduction of bearing capacity.Conversely,after low-amplitude cyclic loading,both the pre-peak bearing capacity and the post-peak ductility of the pillar system increased due to the compaction of initial defects,indicating that the peak bearing capacity was closely related to the extent of pre-peak fatigue damage.The axial strain of each pillar was measured by DIC virtual extensometer to present the damage extent during cyclic loading phase.Meanwhile,fracture evolution of typical load drop points was also characterized by transverse strain fields(εxx),and observations showed that the damage extent of key pillar undergoing high-amplitude cyclic loads was more serious and violent,accompanied by the ejection of rock debris and loud noises.
基金supported by the Innovation Team Project of Liaoning Provincial Education Department(LT2010082)
文摘To solve the problem of corrosion acoustic emission (AE) source feature extraction and recognition, the AE detection validation and the amplitude-frequency characteristics were derived in theory. The amplitude of AE signal generated by bubble burst is proportional to its radius square and the liquid level, while the AE signal frequency is inversely proportional to the bubble radius. The AE signal amplitude of the steel and the steel corrosion product cracking is proportional to the local stress, and the AE signal frequency is proportional to the crack propagation velocity and inversely proportional to the crack propagation distance. Three Q235 specimens were separately immersed in the solution of 10% FeC13.6H20, 5% CuSOa.5H20 and 10% FeC13.6H20 with 0.01 mol/L HCL. The AE systems with high frequency and low frequency were used to detect the whole corrosion process AE signals. The AE signals of Q235 steel and the steel corrosion products cracking were detected as the verification experiment. The AE signals from different sources could be distinguished by AE hits count and the power spectrum. It is coincident with theoretical analysis. These conclusions have significant guidance for the corrosion detection and evaluation by on-line acoustic emission detecting.