期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault 被引量:3
1
作者 Wen-Jing Wang Ling-Li Cui Dao-Yun Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期265-272,共8页
Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains.One of the major challenges is how to differentiate relevant signals to operational conditions of be... Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains.One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment.In this work,we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum(MPS) through a multi-scale morphology analysis procedure.The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves.Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes. 展开更多
关键词 Bearing fault acoustic emission Morphological pattern spectrum(MPS) Sample entropy Lempel-Ziv complexity
下载PDF
PARAMETERS OPTIMIZATION OF CONTINUOUS WAVELET TRANSFORM AND ITS APPLICATION IN ACOUSTIC EMISSION SIGNAL ANALYSIS OF ROLLING BEARING 被引量:7
2
作者 ZHANG Xinming HE Yongyong HAO Rujiang CHU Fulei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期104-108,共5页
Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of ... Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT. 展开更多
关键词 Rolling bearing fault diagnosis acoustic emission (AE) Continuous wavelet transform (CWT) Genetic algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部