期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Geodesic acoustic mode in a reduced two-fluid model
1
作者 任海骏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第12期1-5,共5页
A reduced two-fluid model is constructed to investigate the geodesic acoustic mode(GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose ... A reduced two-fluid model is constructed to investigate the geodesic acoustic mode(GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose evolutions are determined by equations derived from the 16-momentum model. Electrons are supposed to obey the Boltzmann distribution responding to the electrostatic oscillation with near ion acoustic velocity. In the large safety factor limit, the GAM frequency is identical with the kinetic one to the order of 1 q2 when zeroing the anisotropy. For general anisotropy, the reduced two-fluid model generates the frequency agreeing well with the kinetic result with arbitrary electron temperature. The present simplified fluid model will be of great use and interest for young researchers and students devoted to plasma physics. 展开更多
关键词 geodesic acoustic mode fluid model tokamak
下载PDF
Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects
2
作者 李庆祥 孙炳楠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期475-481,共7页
Based on the characteristics of membrane structures and the air influence factors,this paper presented a method to simulate the air aerodynamic force effects including the added air mass,the acoustic radiation damping... Based on the characteristics of membrane structures and the air influence factors,this paper presented a method to simulate the air aerodynamic force effects including the added air mass,the acoustic radiation damping and the pneumatic stiffness.The infinite air was modeled using the acoustic fluid element of commercial FE software and the finite element membrane roof models were coupled with fluid models.A comparison between the results obtained by FE computation and those obtained by the vibration experiment for a cable-membrane verified the validity of the method.Furthermore,applying the method to a flat membrane roof structure and using its wind tunnel test results,the analysis of nonlinear wind-induced dynamic responses for such geometrically nonlinear roofs,including the roof-air coupled model was performed.The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displacements,accelerations and stress of the two different cases.Meantime,numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aerodynamic effects. 展开更多
关键词 membrane roofs finite element method acoustic fluid element aerodynamic effects nonlinear dynamic analysis
下载PDF
An application of radiation boundary condition to scattering problem of acoustic waves in fluids
3
作者 JIANG Jiaxiang(University of Science and Technology of China, Hefei 230026) 《Chinese Journal of Acoustics》 1991年第3期237-243,共7页
A numerical method of solving acoustic wave scattering pnblem in fluids is described. Radiation boundary condition (RBC) obtained by factorization method of Helmholtz equation is applied to transforming the exterior b... A numerical method of solving acoustic wave scattering pnblem in fluids is described. Radiation boundary condition (RBC) obtained by factorization method of Helmholtz equation is applied to transforming the exterior boundary value problem in unbounded region into one in a finite region. Combined with RBC and scatterer surface boundary condition, Helmholtz equation is solved numerically by the finite difference method. Computational results for sphere and prolate spheroidal scatterers are in excellent agreement with eigenfunction solutions and much better than the results of OSRC method. 展开更多
关键词 An application of radiation boundary condition to scattering problem of acoustic waves in fluids
原文传递
Geoacoustic model and acoustic reflection properties of fluid mud layer in Changjiang Estuary and Hangzhou Bay
4
作者 ZHANG Shuying(Shanghai Acoustics Laboratory, Academia Sinica Shanghai 200032)YANG Ting MA Zaitai(Tongji University Shanghai 200092) 《Chinese Journal of Acoustics》 1999年第1期1-9,共9页
A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements... A generalized geoacoustic model of fluid mud layer in Chanaiiang Estuary and Hangzhou Bay has been derived from a large amount of in-situ measurements of bulk density (p) profiles of the lay6rs and of lab measurements of acoustic velocities (c) and attenuation coefficients (o) of the fluid mud samples with different values of p for four frequencies of 100 kHz, 150 kHz, 500 kHz, 1500 kHz. The main features of the geoacoustic model can be expressed as follows: from the upper boundary, the bulk density of the fiuid mud increases linearly with depth z, however there is a gradient change (knee) when p is about 12.5 kN/m', then p increases linearly to a value about 15.0 kN/m'. After p more than 15.0, the fluid mud layer quickly transform into an ooze layer. In the fluid mud layer, the acoustic velocity c can be regarded as constant since its variation with z less than 1.5%, and a minimum vaue of c ekists when p is about 13.5 kN/m'. The variations of β with p and with frequency f are linear. Based on the geo-acoustic model and the ray theory, simulations of sound refiection from the fluid mud layers have been made, and some significallt results obtained, from which the bulk density profiles of fluld mud layers can be derived inversely. 展开更多
关键词 Geoacoustic model and acoustic reflection properties of fluid mud layer in Changjiang Estuary and Hangzhou Bay
原文传递
Squeal noise in hydraulic poppet valves 被引量:1
5
作者 Da-yun YI Liang LU +1 位作者 Jun ZOU Xin FU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2016年第4期317-324,共8页
The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying "squeal" noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of ... The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying "squeal" noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of the squeal noise is obtained by analyzing the sampling data from the accelerometer mounted on the valve body. It is found that the flow velocity, pressure, and structural parameters have crucial effects on the properties of squeal noise, especially frequency. Larger valve chamber volume or lower backpressure leads to lower fundamental frequency of the squeal noise. An explanation for the squeal noise, as a result of Helmholtz resonance, is suggested and proved by experimental results. 展开更多
关键词 Poppet valve Squeal noise Helmholtz resonance fluid acoustics Shear layer instability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部