期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analytic study on acoustic interference pattern in shallow water
1
作者 CHEN Shouhu ZHAO Lianjun +4 位作者 CAO Jianguo GAO Bing ZHU Mo HU Yuan MA Li 《Chinese Journal of Acoustics》 CSCD 2018年第1期18-34,共17页
Analytic formulas for acoustic interference patterns in shallow water are derived by ray method. Which can be used to guide acoustic measurements with limited horizontal distances. Some necessary approximations are ta... Analytic formulas for acoustic interference patterns in shallow water are derived by ray method. Which can be used to guide acoustic measurements with limited horizontal distances. Some necessary approximations are taken for a concise expression. The analytic for- mulas represent the quantitative relationships between the interference-pattern and the signal frequency, bandwidth, depth of source and horizontal distance. Monofrequent signals, com- plicated signals and frequency-modulated signals are all studied. Several inferences are also deduced from the formulas. Both numerical simulations and experiment data are presented to prove that these formulas and their inferences can describe the critical characters of the acoustic interference pattern in the waveguide with a satisfying precision. 展开更多
关键词 Analytic study on acoustic interference pattern in shallow water
原文传递
Rejection of Direct Blast Interference Based on Signal Phase-Matching Array Processing
2
作者 Yun-Fei Chen Zhen-Shan Wang +1 位作者 Bing Jia Gui-Juan Li 《Journal of Electronic Science and Technology》 CAS 2013年第1期106-109,共4页
In bistaic acoustic testing, there will be strong direct blast interference. An algorithm based on signal phase-matching array processing that rejects direct blast interference in bistatic acoustic testing has been st... In bistaic acoustic testing, there will be strong direct blast interference. An algorithm based on signal phase-matching array processing that rejects direct blast interference in bistatic acoustic testing has been studied, through which the object scattering signal is accurately extracted. Characteristics of bistatic acoustic testing and signal phase matching processing principle are fully integrated in this algorithm. Firstly, the direct blast interference is calculated from the receiving signal based on three subarrays signal phase matching processing. Secondly, the direct blast is rejected by subtraction from the receiving signal. In this way the limitations of the high signal to noise ratio that signal phase matching processing required for direct calculating the object scattering signal can be avoided. Simulation and sea trial results show that, when the ratio of signal to interference is greater than -20 dB, this algorithm of direct blast interference rejection based phase matching signal processing can accurately extract the object scattering signal. 展开更多
关键词 Bistatic acoustic testing direct blast interference rejection signal phase matching processing.
下载PDF
Changes of the acoustic modal phase velocity,group velocity and interference distance in an eddy
3
作者 GAO Tianfu CHEN Yaoming(Institute of Acoustics, Academia Sinica Beijing 100080) 《Chinese Journal of Acoustics》 1998年第1期1-13,共13页
Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core edd... Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core eddy on the acoustic propagation characteristics are dis-cussed. According to the solutions of the dispersion equation, the relation between the modal Parameters (phase velocity, group velocity and interference distance) and the eddy intensity is obtained. When the plane wave (with an incident angle a) travels toward the center of a warm-core eddy (disturbed intensity BM ) 'double channel phenomenon' will take place in case of sin2 α < BM < 2(1 - cosα), and then the modal phase velocity and interference distance will have anomalous changes which are completely different from the case of the cold-core eddy. 展开更多
关键词 Am Changes of the acoustic modal phase velocity group velocity and interference distance in an eddy
原文传递
Cloud and precipitation interference by strong low-frequency sound wave 被引量:1
4
作者 JiaHua WEI Jun QIU +5 位作者 TieJian LI YueFei HUANG Zhen QIAO JionWei CAO DeYu ZHONG GuangQian WANG 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第2期261-272,共12页
Acoustic interference of atmosphere has been an attractive research area because of its potential effect on environment,water resources,ecology,agriculture,and other areas.However,it is also a controversial topic beca... Acoustic interference of atmosphere has been an attractive research area because of its potential effect on environment,water resources,ecology,agriculture,and other areas.However,it is also a controversial topic because of the difficulty of quantitative assessment and high operating costs.In this study,a novel acoustic interference technology is proposed that uses strong lowfrequency sound waves.There is no chemical pollution or dependence on airborne vehicles,and it can be remotely controlled at low cost.A complete equipment system for acoustic atmospheric interference technology is established,based on which a series of experimental studies on cloud and precipitation response under acoustic action are performed,mainly including the radar echo intensity,cloud microphysical characteristics and the spatial distribution of ground rainfall intensity.The trigger and periodic effect of the acoustic waves on the cloud are proposed to be the key responses of acoustic atmospheric interference.This study is important to further research on atmosphere interference technology based on low frequency strong sound waves. 展开更多
关键词 acoustic interference of atmosphere low-frequency sound waves air water resources exploration cloud microphysical characteristics precipitation intensity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部