期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Attenuation Effect of Expansion Configuration and Acoustic Material on Propagation of Blast Waves in a Duct
1
作者 Motonobu Ishiguro Kenji Shinkai +2 位作者 Ryo Shimamura Hironobu Gunji Yoko Takakura 《Journal of Flow Control, Measurement & Visualization》 2016年第3期79-92,共14页
With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is ... With recent increase of cars, the noise problem has been caused by the exhaust sounds released from exhaust pipes, which consist of weak and pulsed shock waves called blast waves. To diminish the noise, a silencer is set up in front of the exhaust pipe. In the present study, reflectors were installed in the high-pressure section of the shock tube to generate blast waves, and three types of expansion region were investigated, combined with acoustic material of glass wool. The pressure decay was evaluated by transmission factor and reflection factor for the incident blast wave, together with pressure histories and high-speed Schlieren photography. As results, it was confirmed that the acoustic material greatly contributed to blast-wave attenuation: the one stage expansion model with glass wool recorded the highest decay of the peak over pressure for transmission, and other models with glass wool showed the second highest. The acoustic material also contributed to decay of reflected shock waves propagating toward an upstream duct. 展开更多
关键词 Blast Wave Shock Tube Exhaust Noise Decay Factor Silencer Model acoustic material
下载PDF
Method based on broadband compressed pulse superposition to measure properties of underwater acoustic materials 被引量:2
2
作者 LI Shui,MIAO Rongxing (National Defence Underwater Acoustic Metrology Center Fuyang Zhejiang 311400) 《Chinese Journal of Acoustics》 2001年第1期52-60,共9页
A method is proposed for the measurements of the performances of underwater acoustic finite sized large area material samples in a free field by using broadband pulse compression technique. As the result of which, th... A method is proposed for the measurements of the performances of underwater acoustic finite sized large area material samples in a free field by using broadband pulse compression technique. As the result of which, the low-frequency cutoff of the standard tests is obviously reduced, and the broadband measurements are also realized. The experimental system provides measurements of complex reflection and transmission coefficients at continuous frequency points. From the data one can obtain the following acoustic parameters: echo reduction and insertion loss, absorption and attenuation coefficients, etc. The measurements are performed for two actual panels with the size 1 m x 1 m in the frequency range from 2-20 kHz. 展开更多
关键词 Method based on broadband compressed pulse superposition to measure properties of underwater acoustic materials
原文传递
Acoustic Response and Micro-Damage Mechanism of Fiber Composite Materials under Mode-Ⅱ Delamination 被引量:2
3
作者 周伟 吕智慧 +3 位作者 王雅瑞 刘然 陈维业 李晓彤 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期73-76,共4页
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi... Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites. 展开更多
关键词 der DELAMINATION acoustic Response and Micro-Damage Mechanism of Fiber Composite materials under Mode
下载PDF
The Propagation, Excitation and Coupling of Acoustic Waves in Phonon Band-gap Materials
4
作者 CHEN Yan-feng ZHU Yong-yuan +1 位作者 ZHU Shi-ning MING Nai-ben 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期24-24,共1页
Acoustic wave exhibits inherently different characters of propagation, excitation and coupling in phonon band-gap materials in which its elastic, piezoelectric constants are modulated in order of acoustic wavelength. ... Acoustic wave exhibits inherently different characters of propagation, excitation and coupling in phonon band-gap materials in which its elastic, piezoelectric constants are modulated in order of acoustic wavelength. These kinds of novel materials were exampled by phononic crystals with elastic constants modulation, acoustic superlattice and ionic-type phononic crystals with piezoelectric constants modulation. In this talk, phonic crystals were constructed with steel rods embedded in air. Negative refraction of acoustic wave was both experimentally and theoretically established in the phononic crystals. The propagation of acoustic wave in the crystals show acoustic band structures because the waves are strong scattered at the Brillouin Zone Boundaries, analogy to electron band structure in real crystals and photonic band structure in photonic crystals. In the acoustic superlattice, ultrasonic waves could be excited by applied alternative electric fields by piezoelectric effect. The frequency, mode and amplitude of the excited wave are determined by the microstructured parameters of the acoustic superlattice at the condition of phase matching. Ionic-type phononic crystals describe the coupling between superlattice phonon and electromagnetic wave. The coupling process resulted in the polariton with a dispersion relation totally different from that of both superlattice phonon and E-M waves, analogy to the polariton of the ionic crystals but in microwave instead of infrared light. These microstructural dielectric materials show artificial abnormal properties and will find novel application in ultrasonic devices and microwave devices. 展开更多
关键词 REV PING The Propagation Excitation and Coupling of acoustic Waves in Phonon Band-gap materials
下载PDF
Oblique incidence properties of locally resonant sonic materials with resonance and Bragg scattering effects 被引量:3
5
作者 袁博 温激鸿 温熙森 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期267-273,共7页
A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs), which can reflect strongly near their natural frequencies, where the wavelength ... A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs), which can reflect strongly near their natural frequencies, where the wavelength in the matrix is still much larger than the structural periodicity. Due to the periodic arrangement, an LRSM can also display a Bragg scattering effect, which is a characteristic of phononic crystals. A specific LRSM which possesses both local resonance and Bragg scattering effects is presented. Via the layered-multiple-scattering theory, the complex band structure and the transmittance of such LRSM are discussed in detail. Through the analysis of the refraction behavior at the boundary of the composite, we find that the transmittance performance of an LRSM for oblique incidence depends on the refraction of its boundary and the transmission behaviors of different wave modes inside the composite. As a result, it is better to use some low-speed materials (compared with the speed of waves in surrounding medium) as the LRSM matrix for designing sound blocking materials in underwater applications, since their acoustic properties are more robust to the incident angle. Finally, a gap-coupled LRSM with a broad sub-wavelength transmission gap is studied, whose acoustic performance is insensitive to the angle of incidence. 展开更多
关键词 underwater acoustic materials oblique incidence locally resonant sonic materials Bragg scattering
下载PDF
An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression 被引量:7
6
作者 Yan-Hua Huang Sheng-Qi Yang +2 位作者 Wen-Ling Tian Wei Zeng Li-Yuan Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期442-455,共14页
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce... Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures. 展开更多
关键词 Rock-like material Two unparallel fissures Mechanical parameters Crack evolution acoustic emission(AE)
下载PDF
Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
7
作者 周扬 杨彰昭 +1 位作者 彭尧吟 邹欣晔 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期91-98,共8页
Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric syst... Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric system constructed by piezoelectric composite plates with two different active external circuits.By judiciously adjusting the resistances and inductances in the external circuits,we obtain the exceptional point due to the spontaneous breaking of PT symmetry at the desired frequencies and can observe the unidirectional invisibility.Moreover,the system can be at PT exact phase or broken phase at the same frequency in the same structure by merely adjusting the external circuits,which represents the active control that makes the acoustic manipulation more convenient.Our study may provide a feasible way for manipulating acoustic waves and inspire the application of piezoelectric composite materials in acoustic structures. 展开更多
关键词 parity-time symmetry acoustic gain material piezoelectric composite plate exceptional point
下载PDF
Various topological phases and their abnormal effects of topological acoustic metamaterials
8
作者 Yan-Feng Chen Ze-Guo Chen +6 位作者 Hao Ge Cheng He Xin Li Ming-Hui Lu Xiao-Chen Sun Si-Yuan Yu Xiujuan Zhang 《Interdisciplinary Materials》 2023年第2期179-230,共52页
The last 20 years have witnessed growing impacts of the topological concept on the branches of physics,including materials,electronics,photonics,and acoustics.Topology describes objects with some global invariant prop... The last 20 years have witnessed growing impacts of the topological concept on the branches of physics,including materials,electronics,photonics,and acoustics.Topology describes objects with some global invariant property under continuous deformation,which in mathematics could date back to the 17th century and mature in the 20th century.In physics,it successfully underpinned the physics of the Quantum Hall effect in 1984.To date,topology has been extensively applied to describe topological phases in acoustic metamaterials.As artificial structures,acoustic metamaterials could be well theoretically analyzed,on-demand designed,and easily fabricated by modern techniques,such as three-dimensional printing.Some new theoretical topological models were first discovered in acoustic metamaterials analogous to electronic counterparts,associated with novel effects for acoustics closer to applications.In this review,we focused on the concept of topology and its realization in airborne acoustic crystals,solid elastic phononic crystals,and surface acoustic wave systems.We also introduced emerging concepts of non-Hermitian,higher-order,and Floquet topological insulators in acoustics.It has been shown that the topology theory has such a powerful generality that among the disciplines from electron to photon and phonon,from electronic to photonics and acoustics,from acoustic topological theory to acoustic devices,could interact and be analogous to fertilize fantastic new ideas and prototype devices,which might find applications in acoustic engineering and noisevibration control engineering in the near future. 展开更多
关键词 acoustic materials robust propagation topological acoustic metamaterials topological phases
原文传递
Measurement of the echo reduction for underwater acoustic passive materials by using the time reversal technique 被引量:8
9
作者 YAN Xiaowei LI Jianlong HE Zhiguang 《Chinese Journal of Acoustics》 CSCD 2016年第3期309-320,共12页
A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly foc... A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources. 展开更多
关键词 time Measurement of the echo reduction for underwater acoustic passive materials by using the time reversal technique TR
原文传递
Analysis on the influence factors of the acoustic absorption performance of porous fiber materials 被引量:1
10
作者 Lijun Li Fuxiang Dong +2 位作者 Xianyue Gang Fengshan Sun Xueyi Zhang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第1期157-172,共16页
Porous fiber materials are the most widely used acoustic absorption materials at present,and they have excellent acoustic absorption performance.This paper uses the finite element method to explore the factors affecti... Porous fiber materials are the most widely used acoustic absorption materials at present,and they have excellent acoustic absorption performance.This paper uses the finite element method to explore the factors affecting the acoustic absorption performance of porous fiber materials,including flow resistance,thickness of the porous fiber material,incidence angle,and back cavity thickness.Due to the complex acoustic absorption mechanism of porous fiber materials,an equivalent fluid model is used to simulate the acoustic absorption properties of the porous fiber materials.The correlation of acoustic absorption performance and the model of the back cavity was analyzed.An impedance tube test was implemented to verify the simulation results. 展开更多
关键词 acoustic absorption material equivalent fluid model finite element method back cavity impedance tube
原文传递
Measurement of insertion loss for underwater acoustic passive materials with the time reversal technique 被引量:2
11
作者 YAN Xiaowei LI Jianlong KONG Xiangdong 《Chinese Journal of Acoustics》 2014年第2期109-120,共12页
A method using the time reversal(TR) technique to measure the insertion loss(IL) of passive materials is presented.Firstly the received signals are focused according to the TR theory when there is not a sample bet... A method using the time reversal(TR) technique to measure the insertion loss(IL) of passive materials is presented.Firstly the received signals are focused according to the TR theory when there is not a sample between the source and the received array.Then,the sample is placed near the received array and the TR processing is again employed to realize the focus of the received signal.Finally,the IL of the sample is evaluated from these focusing signals.Because the TR processing can focus the energy in spatial domain and time domain,the method can be used to measure acoustic properties of passive materials in a waveguide tank with reflections induced by boundaries or with low source frequencies.Two samples with the same size of 1.1 m×1.0 m×5 mm are tested in the waveguide tank.The method is demonstrated by the comparison of the theoretical and the experimental results in the measured frequency range of 1-20 kHz. 展开更多
关键词 TIME Measurement of insertion loss for underwater acoustic passive materials with the time reversal technique TR
原文传递
Investigation on method for measuring dynamic shear modulus of underwater acoustic structure materials 被引量:1
12
作者 LI Shui TANG Haiqing MIAO Rongxing (Hangzhou Applied Acoustic Institute Fuyang Zhejiang 311400) 《Chinese Journal of Acoustics》 1999年第2期121-127,共7页
A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and te... A new method is described to measure the dynamic shear modulus of underwater acoustic structure materials in a small anechoic water tank by using a broadband parametric source, a precise coordinate installation and techniques of signal processing in the frequency range of 20 kHz - 100 kHz. The typical size of material samples is 500×500 mm2. Basic principles, experiment installation and measured results are also presented 展开更多
关键词 Investigation on method for measuring dynamic shear modulus of underwater acoustic structure materials
原文传递
Analysis and improvement of sound radiation performance of spherical cap radiator
13
作者 唐义政 吴昭军 汤立国 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期384-392,共9页
A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is... A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods. 展开更多
关键词 spherical cap radiator acoustic soft material DIRECTIVITY
下载PDF
Damping of Ni–Mn–Ga epoxy resin composites 被引量:1
14
作者 Wei Liang He Yu +1 位作者 Liu Yufeng Yang Naibin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1596-1605,共10页
By combining the advantages of effcient damping and high mechanical properties,Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design.In this paper,a ferromagnetic shape me... By combining the advantages of effcient damping and high mechanical properties,Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design.In this paper,a ferromagnetic shape memory alloy Ni-Mn-Ga composite is prepared.Ni-Mn-Ga particle/bisphenol-A epoxy composite cantilever beam vibration tests under a magnetic feld and without the magnetic feld are conducted to analyze the structural damping ratios n.Meanwhile,the damping characteristics of the Ni-Mn-Ga composite are studied through the axial loading-unloading method and the acoustic emission signals method.The damping coeffcient of the composite for different Ni-Mn-Ga volume fractions is obtained.The interface properties of the composite are discussed by micro examination and axial loading.The relationships between the damping of the composite and that of the component materials are discussed.The specifc damping capacity(SDC)and acoustic emission counts diagram of different specimens with different Ni-Mn-Ga volume fractions are analyzed. 展开更多
关键词 acoustic emission Ferromagnetic material material damping Ni-Mn-Ga resin matrix composite Structural damping ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部