A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the de...A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV.展开更多
Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and ...Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves' amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.展开更多
A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly foc...A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources.展开更多
The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex b...The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51305423)the National Basic Research Program of China(GrantNo.2011CB302104)
文摘A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV.
基金financially supported by the Scientific Research Fund of Heilongjiang Provincial Education Department(Grant No.12541132)the Natural Science Youth Foundation of Heilongjiang Province of China(Grant No.QC2015082)
文摘Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves' amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.
文摘A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources.
文摘The general corrosion and local corrosion of Q235 steel were tested by acoustic emission (AE) detecting system under 6% FeCl3.6H2O solution to effectively detect the corrosion acoustic emission signal from complex background noise. The short-time fractal dimension and discrete fractional cosine transform methods are combined to reduce noise. The input SNR is 0-15 dB while corrosion acoustic emission signals being added with white noise, color noise and pink noise respectively. The results show that the output signal-to-noise ratio is improved by up to 8 dB compared with discrete cosine transform and discrete fractional cosine transform. The above-mentioned noise reduction method is of significance for the identification of corrosion induced acoustic emission signals and the evaluation of the metal remaining life.