We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential to numerically control acoustic waves in different ways.Th...We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential to numerically control acoustic waves in different ways.The trajectory of an acoustic wave within the system is derived by employing the theory of geometric acoustics,and the validity of the theoretical descriptions is verified numerically by using the finite element method simulation.The results show that by tailoring the distribution function of the refractive index,the proposed system can yield a tunable manipulation of acoustic waves,such as acoustic bending,trapping,and absorbing.展开更多
The signal processing technology based on material with negative refractive index provides researchers with the latest ideas. As a new nondestructive bio-photonic technology, photoacoustic tomography is a kind of ...The signal processing technology based on material with negative refractive index provides researchers with the latest ideas. As a new nondestructive bio-photonic technology, photoacoustic tomography is a kind of imaging method based on the differences of optical absorption within the biological organization However, photoacoustic tomography by the scanning sensor or by the sensors array at present has its inherent disadvantages that may lead to poor real-time performance and high cost in the imaging process. The characteristics of acoustic lens with negative refractive index such as focusing, filtering and directional control on acoustic wave, are very suitable for solving the problem in photoacoustic tomography. With an analysis on the nega-tive quality response of acoustic lens and the advantages of negative refractive imaging, we proposed an approach using the lens to change the current photoacoustic imaging methods. The experiment showed that the imaging effectiveness of photoacoustic tomography by the designed lens is very impressive that the pressure distribution of the absorber is basically consistent with the image of the absorber. In addition, the result of 0. 6 times wavelength in the experimental image is demonstrated on sub-wave-length photoacoustic imaging through the lens designed in this work.展开更多
To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especia...To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.展开更多
This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths...This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced. Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake, Yunnan, China. The accuracy of the travel time estimation has been improved based on the aforementioned technique and method. At the same time, by comparison of the results of temperature field with different means, the max absolute error, the maximum relative error and the root mean square error are given. It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent. It also has a good accuracy.展开更多
We review the dark decay of the electronic holographic phase grating before thermal fixing, and deduce the general analytic expression of the lifetime of thermal-fixed ionic holograms in the photorefractive crystal, b...We review the dark decay of the electronic holographic phase grating before thermal fixing, and deduce the general analytic expression of the lifetime of thermal-fixed ionic holograms in the photorefractive crystal, by means of analogizing. Because the ions are optically inactive, the lifetime of thermal-fixed ionic holograms is only closely relate to the ionic decay rate which is determined by the conductivity of ionic species at a given temperature. We theoretically analyze and numerically simulate the influences on the lifetime of ionic grating from the crucial factors in the experiment and application. The results reveal that low temperature, low ion-concentration, and large grating spacing are advantages for extending the life of the thermal-fixed volume holographic phase grating in photorefractive crystal.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2010CB327803 and 2012CB921504)the National Natural Science Foundation of China(Grant Nos.11174138,11174139,11222442,81127901,and 11274168)+1 种基金NCET-12-0254the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential to numerically control acoustic waves in different ways.The trajectory of an acoustic wave within the system is derived by employing the theory of geometric acoustics,and the validity of the theoretical descriptions is verified numerically by using the finite element method simulation.The results show that by tailoring the distribution function of the refractive index,the proposed system can yield a tunable manipulation of acoustic waves,such as acoustic bending,trapping,and absorbing.
基金National Natural Science Foundation of China(No.61671414,No.61302159)
文摘The signal processing technology based on material with negative refractive index provides researchers with the latest ideas. As a new nondestructive bio-photonic technology, photoacoustic tomography is a kind of imaging method based on the differences of optical absorption within the biological organization However, photoacoustic tomography by the scanning sensor or by the sensors array at present has its inherent disadvantages that may lead to poor real-time performance and high cost in the imaging process. The characteristics of acoustic lens with negative refractive index such as focusing, filtering and directional control on acoustic wave, are very suitable for solving the problem in photoacoustic tomography. With an analysis on the nega-tive quality response of acoustic lens and the advantages of negative refractive imaging, we proposed an approach using the lens to change the current photoacoustic imaging methods. The experiment showed that the imaging effectiveness of photoacoustic tomography by the designed lens is very impressive that the pressure distribution of the absorber is basically consistent with the image of the absorber. In addition, the result of 0. 6 times wavelength in the experimental image is demonstrated on sub-wave-length photoacoustic imaging through the lens designed in this work.
基金funded by the National High Technology Research and Development Program of China('863'Program)under contract Nos.2004AA616080 and 2006AA09ZI03the National Natural Science Foundation of China(Project code:40606026).
文摘To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.
基金supported by the National Science and Technology Support Program of China(Grant No.2012BAB09B02)Zhejiang Key Discipline of Marine Technology and Systems(Grant No.20120109)the National High Technology Research and Development Program of China(863Program,Grant No.2007AA09Z213)
文摘This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced. Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake, Yunnan, China. The accuracy of the travel time estimation has been improved based on the aforementioned technique and method. At the same time, by comparison of the results of temperature field with different means, the max absolute error, the maximum relative error and the root mean square error are given. It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent. It also has a good accuracy.
基金supported by the National"863"Program of China under Grant No.2007AA01Z2a5
文摘We review the dark decay of the electronic holographic phase grating before thermal fixing, and deduce the general analytic expression of the lifetime of thermal-fixed ionic holograms in the photorefractive crystal, by means of analogizing. Because the ions are optically inactive, the lifetime of thermal-fixed ionic holograms is only closely relate to the ionic decay rate which is determined by the conductivity of ionic species at a given temperature. We theoretically analyze and numerically simulate the influences on the lifetime of ionic grating from the crucial factors in the experiment and application. The results reveal that low temperature, low ion-concentration, and large grating spacing are advantages for extending the life of the thermal-fixed volume holographic phase grating in photorefractive crystal.