This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regul...This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regularizations perform better in the sense of edge preserving. While anisotropic TV regularization will cause distortions along axes. To minimize the energy function with isotropic and anisotropic regularization terms, we use split Bregman scheme. We do several 2D numerical experiments to validate the above arguments.展开更多
It is proved that a sound-soft scatterer in R^N (N = 2, 3) is uniquely determined by a finite number of acoustic far-field measurements. The admissible scatterer possibly consists of finitely many solid obstacles an...It is proved that a sound-soft scatterer in R^N (N = 2, 3) is uniquely determined by a finite number of acoustic far-field measurements. The admissible scatterer possibly consists of finitely many solid obstacles and subsets of (N - 1)- dimensional hyperplanes.展开更多
In this paper, we consider the shape identification problem of a body immersed in the incompressible fluid governed by Stokes-Oseen equations. Based on the domain derivative method, we derive the explicit representati...In this paper, we consider the shape identification problem of a body immersed in the incompressible fluid governed by Stokes-Oseen equations. Based on the domain derivative method, we derive the explicit representation of the derivative of solution with respect to the boundary. Then, according to the boundary parametrization technique, we propose a regularized Gauss-Newton algorithm for the shape inverse problem. Finally, numerical examples indicate that the iterative algorithm is feasible and effective for the practical purpose.展开更多
A nonlinear optimization method was developed to solve the inverse problem of determining the shape of a hard target from the knowlegde of the far-field pattern of the acoustic scattering wave,it was achieved by solvi...A nonlinear optimization method was developed to solve the inverse problem of determining the shape of a hard target from the knowlegde of the far-field pattern of the acoustic scattering wave,it was achieved by solving independently an ill-posed linear system and a well-posed minimization problem.Such a separate numerical treatment for the ill-posedness and nonlinearity of the inverse problem makes the numerical implementation of the proposed method very easy and fast since there only involves the solution of a small scale minimization problem with one unknown function in the nonlinear optimization step for determining the shape of the sound-hard obstacle.Another particular feature of the method is that it can reproduce the shape of an unknown hard target efficiently from the knowledge of only one Fourier coefficient of the far-field pattern.Moreover,a two-step adaptive iteration algorithm was presented to implement numerically the nonlinear optimization scheme.Numerical experiments for several two-dimensional sound-hard scatterers having a variety of shapes provide an independent verification of the effectiveness and practicality of the inversion scheme.展开更多
We propose a numerical procedure to extend to full aperture the acoustic farfield pattern(FFP)when measured in only few observation angles.The reconstruction procedure is a multi-step technique that combines a total v...We propose a numerical procedure to extend to full aperture the acoustic farfield pattern(FFP)when measured in only few observation angles.The reconstruction procedure is a multi-step technique that combines a total variation regularized iterative method with the standard Tikhonov regularized pseudo-inversion.The proposed approach distinguishes itself from existing solution methodologies by using an exact representation of the total variation which is crucial for the stability and robustness of Newton algorithms.We present numerical results in the case of two-dimensional acoustic scattering problems to illustrate the potential of the proposed procedure for reconstructing the full aperture of the FFP from very few noisy data such as backscattering synthetic measurements.展开更多
文摘This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regularizations perform better in the sense of edge preserving. While anisotropic TV regularization will cause distortions along axes. To minimize the energy function with isotropic and anisotropic regularization terms, we use split Bregman scheme. We do several 2D numerical experiments to validate the above arguments.
文摘It is proved that a sound-soft scatterer in R^N (N = 2, 3) is uniquely determined by a finite number of acoustic far-field measurements. The admissible scatterer possibly consists of finitely many solid obstacles and subsets of (N - 1)- dimensional hyperplanes.
文摘In this paper, we consider the shape identification problem of a body immersed in the incompressible fluid governed by Stokes-Oseen equations. Based on the domain derivative method, we derive the explicit representation of the derivative of solution with respect to the boundary. Then, according to the boundary parametrization technique, we propose a regularized Gauss-Newton algorithm for the shape inverse problem. Finally, numerical examples indicate that the iterative algorithm is feasible and effective for the practical purpose.
文摘A nonlinear optimization method was developed to solve the inverse problem of determining the shape of a hard target from the knowlegde of the far-field pattern of the acoustic scattering wave,it was achieved by solving independently an ill-posed linear system and a well-posed minimization problem.Such a separate numerical treatment for the ill-posedness and nonlinearity of the inverse problem makes the numerical implementation of the proposed method very easy and fast since there only involves the solution of a small scale minimization problem with one unknown function in the nonlinear optimization step for determining the shape of the sound-hard obstacle.Another particular feature of the method is that it can reproduce the shape of an unknown hard target efficiently from the knowledge of only one Fourier coefficient of the far-field pattern.Moreover,a two-step adaptive iteration algorithm was presented to implement numerically the nonlinear optimization scheme.Numerical experiments for several two-dimensional sound-hard scatterers having a variety of shapes provide an independent verification of the effectiveness and practicality of the inversion scheme.
文摘We propose a numerical procedure to extend to full aperture the acoustic farfield pattern(FFP)when measured in only few observation angles.The reconstruction procedure is a multi-step technique that combines a total variation regularized iterative method with the standard Tikhonov regularized pseudo-inversion.The proposed approach distinguishes itself from existing solution methodologies by using an exact representation of the total variation which is crucial for the stability and robustness of Newton algorithms.We present numerical results in the case of two-dimensional acoustic scattering problems to illustrate the potential of the proposed procedure for reconstructing the full aperture of the FFP from very few noisy data such as backscattering synthetic measurements.