期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Automatic depression recognition by intelligent speech signal processing:A systematic survey
1
作者 Pingping Wu Ruihao Wang +3 位作者 Han Lin Fanlong Zhang Juan Tu Miao Sun 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期701-711,共11页
Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit... Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition. 展开更多
关键词 acoustic signal processing deep learning feature extraction speech depression recognition
下载PDF
Underwater Noise Target Recognition Based on Sparse Adversarial Co-Training Model with Vertical Line Array
2
作者 ZHOU Xingyue YANG Kunde +2 位作者 YAN Yonghong LI Zipeng DUAN Shunli 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1201-1215,共15页
The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driv... The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion. 展开更多
关键词 underwater acoustic target recognition marine acoustic signal processing sound field feature extraction sparse adversarial network
下载PDF
Signal processing in underwater acoustic communication system for manned deep submersible "Jiaolong" 被引量:7
3
作者 ZHU Weiqing ZHU Min +4 位作者 WU Yanbo YANG Bo XU Lijun FU Xiang PAN Feng 《Chinese Journal of Acoustics》 2013年第1期1-15,共15页
For the first time in the world, underwater acoustic transmission of images, human voice, data and texts between vehicle under 7000 m depth and surface ship was accomplished by underwater acoustic communication system... For the first time in the world, underwater acoustic transmission of images, human voice, data and texts between vehicle under 7000 m depth and surface ship was accomplished by underwater acoustic communication system of manned deep submersible Jiaolong'. In this paper, signal processing in underwater acoustic communication system for manned deep submersible "Jiaolong" is introduced. (1) Four communication methods are integrated to meet different needs: 1) coherent underwater acoustic communication, with a variable transmission rate from 5 kbps to 15 kbps, to transmit images. 2) Non-coherent underwater acoustic com- munication, with a transmission rate 300 bps, to transmit texts, instructions, and sensor data. 3) Spread spectrum underwater acoustic communication, with a transmission rate 16 bps, to transmit instructions. 4) Underwater voice communication, using single sideband modulation to transmit hmnan voice. (2) Signal processing method in coherent communication mainly consists of concatenation of decision feedback equalizer and Turbo decoder, and wavelet based image compression with fixed length coding. In the equalizer, Doppler compensation, multi- channel combining and equalizer coefficients updating are all using fast self-optimized adaptive algorithm. (3) A linear hydrophone array is lowered from the mother ship to certain depth, and spatial diversity combining technology is adopted. (4) Diving trials of "Jiaolong" were carried out in Pacific Ocean. The communication range can cover nearly all ocean depth. One optical/acoustic image can be transmitted in 7 or 14 seconds. 展开更多
关键词 Jiaolong signal processing in underwater acoustic communication system for manned deep submersible DEEP DFE Figure QPSK SNR
原文传递
Signal processing for noncoherent underwater acoustic communication approaching channel capacity 被引量:4
4
作者 WU Yanbo ZHU Min +1 位作者 ZHU Weiqing XING Zeping 《Chinese Journal of Acoustics》 2014年第4期337-347,共11页
Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenate... Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenated code of the nonbinary LDPC code and the constant weight code is proposed for noncoherent communication which can late be iteratively decoded in the probability domain.Without information of channel amplitude or phase in the receiver,statistic parameters of the respective signal and noise bins were estimated based on the moment estimation method,the posterior probabilities of the constant weight code words were further calculated,and the nonbinary LDPC code was decoded with the nonbinary factor graph algorithm.It is verified by simulations that by utilizing the proposed concatenated code and its processing algorithm,gap to channel capacity curve is reduced by 3 dB when compared to the existing method.Underwater communication experiments were carried out in both deep ocean(vertical communication,5 km)and shallow lake(horizontal communication,near 3 km,delay spread larger than 50 ms),in which the signal frequency band was 6 kHz to10 kHz,and the data transmission rate Was 357 bps.The proposed scheme can work properly in both experiments with a signal-to-noise ratio threshold of 2 dB.The performance of the proposed algorithm Was well verified by the experiments. 展开更多
关键词 LDPC CODE signal processing for noncoherent underwater acoustic communication approaching channel capacity OOK
原文传递
The laboratory of acoustics,speech and signal processing at the institute of acoustics 被引量:1
5
《Chinese Journal of Acoustics》 1990年第4期372-374,共3页
The Laboratory of Acoustics,Speech and Signal Processing(LASSP),theunique and superior national key laboratory of ASSP in China,has been foundedat the Inst.of Acoustics,Academia Sinica,Beijing PRC.After three years of... The Laboratory of Acoustics,Speech and Signal Processing(LASSP),theunique and superior national key laboratory of ASSP in China,has been foundedat the Inst.of Acoustics,Academia Sinica,Beijing PRC.After three years ofefforts,the construction of the LASSP has been completed successfully and thecertain capability of performing frontier research projects in fundamental theory andapplied technology of sound field and acoustic signal processing has ben formed.A fiexible and complete experimental acoustic signal processing system hasbeen set up in the LASSP.With the remarkable advantage of real time signalprocessing and resource sharing,a wide range of research projects in the field ofASSP can be conducted in the laboratory.The Signal Processing Center of theLASSP is well equipped with many computer research facilities including the 展开更多
关键词 ASSP In WELL The laboratory of acoustics speech and signal processing at the institute of acoustics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部