This study delved into the acoustic spectrum of bubble clusters,each consisting of 352 vapor bubbles across volume fractions ranging from 0.005%to 40%.The clusters,organized in five distinct layers,were modeled using ...This study delved into the acoustic spectrum of bubble clusters,each consisting of 352 vapor bubbles across volume fractions ranging from 0.005%to 40%.The clusters,organized in five distinct layers,were modeled using the volume of fluid(VOF)method to capture the bubble interfaces,and the Ffowcs Williams-Hawkings(FW-H)methodology to compute the far-field acoustic pressure from bubble collapse.Further analysis revealed distinct sound pressure behaviors across different volume fractions:For 25%–40%,time-domain analysis shows that the peak acoustic pressure pulses from the two innermost layers of bubbles are significantly higher than those from the outer layers.In the frequency domain,the octave decay rate of the acoustic pressure levels is relatively low,around−3dB/octave.For 0.5%–25%,four acoustic pressure pulses with similar widths and peak values were observed in the time domain.In the frequency domain,there are three distinct peaks in sound pressure levels(SPL),directly linked to the difference in collapse times of bubbles within the cluster,and the octave decay rate accelerates as the volume fraction decreases,stabilizing at−6dB/octave when the volume fraction is reduced to 17.5%.For 0.005%–0.5%,as the volume fraction decreases from 0.5%to 0.1%,the number of acoustic pressure pulses significantly reduces.Below 0.1%volume fraction,only a single wider pulse is observed.In the frequency domain,the octave decay rate gradually increases with decreasing volume fraction,significantly exceeding−10dB/octave when it drops below 0.1%,reaching up to−11.7dB/octave.展开更多
The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fib...The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.展开更多
Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains.One of the major challenges is how to differentiate relevant signals to operational conditions of be...Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains.One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment.In this work,we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum(MPS) through a multi-scale morphology analysis procedure.The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves.Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.展开更多
Direct-sequence spread spectrum (DSSS) communication possesses low probability of detection and has been widely used in confidential communications. However, pseudo-noise (PN) sequences, used as spreading code in ...Direct-sequence spread spectrum (DSSS) communication possesses low probability of detection and has been widely used in confidential communications. However, pseudo-noise (PN) sequences, used as spreading code in conventional DSSS communications, possess peri- odic character and binary value. In hostile environments, these distinct characters may lead to some important parameters of signals being estimated accurately, and then lead to the leakage of transmitted information. To solve the problem, we propose the chaotic phase modulation (CPM) sequence alternating the PN sequences. CPM sequence has complex values and constant envelope, and also possesses large quantity and good correlation characteristics. Moreover, it has more hidden features than conventional sequences by modulating its phases using chaotic sequence. To improve the data rate, we apply it into the technique of multichannel communica-tion. Simulation results show this scheme's superior bit error ratio (BER) performance, which demonstrates its feasibility in underwater acoustic communications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12272343),the State Key Program of National Natural Science of China(Grant No.91852204).
文摘This study delved into the acoustic spectrum of bubble clusters,each consisting of 352 vapor bubbles across volume fractions ranging from 0.005%to 40%.The clusters,organized in five distinct layers,were modeled using the volume of fluid(VOF)method to capture the bubble interfaces,and the Ffowcs Williams-Hawkings(FW-H)methodology to compute the far-field acoustic pressure from bubble collapse.Further analysis revealed distinct sound pressure behaviors across different volume fractions:For 25%–40%,time-domain analysis shows that the peak acoustic pressure pulses from the two innermost layers of bubbles are significantly higher than those from the outer layers.In the frequency domain,the octave decay rate of the acoustic pressure levels is relatively low,around−3dB/octave.For 0.5%–25%,four acoustic pressure pulses with similar widths and peak values were observed in the time domain.In the frequency domain,there are three distinct peaks in sound pressure levels(SPL),directly linked to the difference in collapse times of bubbles within the cluster,and the octave decay rate accelerates as the volume fraction decreases,stabilizing at−6dB/octave when the volume fraction is reduced to 17.5%.For 0.005%–0.5%,as the volume fraction decreases from 0.5%to 0.1%,the number of acoustic pressure pulses significantly reduces.Below 0.1%volume fraction,only a single wider pulse is observed.In the frequency domain,the octave decay rate gradually increases with decreasing volume fraction,significantly exceeding−10dB/octave when it drops below 0.1%,reaching up to−11.7dB/octave.
基金Funded by the National Natural Science Foundation of China(No.51009058)Postdoctoral Science Foundation of China(No.2011M501160)+1 种基金the University Natural Science Research Project of Jiangsu Province(No.13KJD560002)the Doctoral Research Start-up Fund of Jinling Institute of Technology(No.Jit-b-201321)
文摘The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.
基金supported by the National Natural Science Foundation of China (Grant 51205017)the National Science and Technology Support Program (Grant 2015BAG12B01)the National Basic Research Program of China (Grant 2015CB654805)
文摘Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains.One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment.In this work,we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum(MPS) through a multi-scale morphology analysis procedure.The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves.Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.
文摘Direct-sequence spread spectrum (DSSS) communication possesses low probability of detection and has been widely used in confidential communications. However, pseudo-noise (PN) sequences, used as spreading code in conventional DSSS communications, possess peri- odic character and binary value. In hostile environments, these distinct characters may lead to some important parameters of signals being estimated accurately, and then lead to the leakage of transmitted information. To solve the problem, we propose the chaotic phase modulation (CPM) sequence alternating the PN sequences. CPM sequence has complex values and constant envelope, and also possesses large quantity and good correlation characteristics. Moreover, it has more hidden features than conventional sequences by modulating its phases using chaotic sequence. To improve the data rate, we apply it into the technique of multichannel communica-tion. Simulation results show this scheme's superior bit error ratio (BER) performance, which demonstrates its feasibility in underwater acoustic communications.