Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectiv...Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectively,thereby limiting time step selection.Based on the definition of temporal and spatial FD operators,we propose a variable-length temporal and spatial operator strategy to model wave propagation beyond those CFL numbers while preserving accuracy.First,to simulate wave propagation beyond the conventional CFL stability limit,the lengths of the temporal operators are modified to exceed the lengths of the spatial operators for high-velocity zones.Second,to preserve the modeling accuracy,the velocity-dependent lengths of the temporal and spatial operators are adaptively varied.The maximum CFL numbers for the proposed method can reach 1.25 and 1.0 in high velocity contrast 2D and 3D simulation examples,respectively.We demonstrate the effectiveness of our method by modeling wave propagation in simple and complex media.展开更多
A variable coefficient viscoelastic wave equation with acoustic boundary conditions and nonlinear source term is considered. Under suitable conditions on the initial data and the relaxation function g, we show the pol...A variable coefficient viscoelastic wave equation with acoustic boundary conditions and nonlinear source term is considered. Under suitable conditions on the initial data and the relaxation function g, we show the polynomial decay of the energy solution and the blow up of solutions by energy methods. The estimates for the lifespan of solutions are also given.展开更多
Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and c...Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.展开更多
基金the National Natural Science Foundation of China(No.41874144)the Research Foundation of China University of PetroleumBeijing at Karamay(RCYJ2018A-01-001).
文摘Conventional finite-difference(FD)methods cannot model acoustic wave propagation beyond Courant-Friedrichs-Lewy(CFL)numbers 0.707 and 0.577 for two-dimensional(2D)and three-dimensional(3D)equal spacing cases,respectively,thereby limiting time step selection.Based on the definition of temporal and spatial FD operators,we propose a variable-length temporal and spatial operator strategy to model wave propagation beyond those CFL numbers while preserving accuracy.First,to simulate wave propagation beyond the conventional CFL stability limit,the lengths of the temporal operators are modified to exceed the lengths of the spatial operators for high-velocity zones.Second,to preserve the modeling accuracy,the velocity-dependent lengths of the temporal and spatial operators are adaptively varied.The maximum CFL numbers for the proposed method can reach 1.25 and 1.0 in high velocity contrast 2D and 3D simulation examples,respectively.We demonstrate the effectiveness of our method by modeling wave propagation in simple and complex media.
文摘A variable coefficient viscoelastic wave equation with acoustic boundary conditions and nonlinear source term is considered. Under suitable conditions on the initial data and the relaxation function g, we show the polynomial decay of the energy solution and the blow up of solutions by energy methods. The estimates for the lifespan of solutions are also given.
文摘Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.