Photoacoustic spectroscopy was used to test the photoacoustic properties of sulfur hexafluoride, an optically thick and potent greenhouse gas. While exploring the photoacoustic effect of sulfur hexafluoride, the effec...Photoacoustic spectroscopy was used to test the photoacoustic properties of sulfur hexafluoride, an optically thick and potent greenhouse gas. While exploring the photoacoustic effect of sulfur hexafluoride, the effects of the position of the microphone within a gas cell were determined. Using a 35 cm gas cell, microphones were positioned at 17.5 cm, the middle of the gas cell, 12.5 cm, 7.5 cm, and 2.5 cm from the window of the cell. From the photoacoustic signal produced for each resonance frequency at each microphone position, the effects of acoustic pressure produced at each position on the signal recorded were observed. This is the first study done by experimentation with the photoacoustic effect to show that standing waves have different amplitudes at different microphone positions.展开更多
文摘Photoacoustic spectroscopy was used to test the photoacoustic properties of sulfur hexafluoride, an optically thick and potent greenhouse gas. While exploring the photoacoustic effect of sulfur hexafluoride, the effects of the position of the microphone within a gas cell were determined. Using a 35 cm gas cell, microphones were positioned at 17.5 cm, the middle of the gas cell, 12.5 cm, 7.5 cm, and 2.5 cm from the window of the cell. From the photoacoustic signal produced for each resonance frequency at each microphone position, the effects of acoustic pressure produced at each position on the signal recorded were observed. This is the first study done by experimentation with the photoacoustic effect to show that standing waves have different amplitudes at different microphone positions.