We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the c...We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the constrained optimization together which can inverse the slowness effectively. One advantage of slowness inversion is that there is no further approximation in the gradient derivation. Moreover, a new algorithm named the skip method for solving the constrained optimization problem is proposed. The TV regularization has good ability to inverse slowness at its discontinuities while the constrained optimization can keep the inversion converging in the right direction. Numerical computations both for noise free data and noisy data show the robustness and effectiveness of our method and good inversion results are yielded.展开更多
In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In...In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.展开更多
Ocean boundaries present a significant effect on the vibroacoustic characteristics and sound propagation of an elastic structure in practice.In this study,an efficient finite element/wave superposition method(FE/WSM)f...Ocean boundaries present a significant effect on the vibroacoustic characteristics and sound propagation of an elastic structure in practice.In this study,an efficient finite element/wave superposition method(FE/WSM)for predicting the three-dimen-sional acoustic radiation from an arbitrary-shaped radiator in Pekeris waveguides with a lossy seabed is proposed.The method is based on the FE method(FEM),WSM,and sound propagation models.First,a near-field vibroacoustic model is established by the FEM to obtain vibration information on a radiator surface.Then,the WSM based on the Helmholtz boundary integral is used to pre-dict the far-field acoustic radiation and propagation.Furthermore,the rigorous image source method and complex normal mode are employed to obtain the near-and far-field Green’s function(GF),respectively.The former,which is based on the spherical wave decomposition,is adopted to accurately solve the near-field source strength,and the far-field acoustic radiation is calculated by the latter and perturbation theory.The simulations of both models are compared to theoretical wavenumber integration solutions.Finally,numerical experiments on elastic spherical and cylindrical shells in Pekeris waveguides are presented to validate the accuracy and efficiency of the proposed method.The results show that the FE/WSM is adaptable to complex radiators and ocean-acoustic envi-ronments,and are easy to implement and computationally efficient in calculating the structural vibration,acoustic radiation,and sound propagation of arbitrarily shaped radiators in practical ocean environments.展开更多
This article presents a case study concerning a seismic characterization project.Full-wave sonic logging was used to characterize the shallow compressional wave and shear wave velocity profiles in the site.Anomalous v...This article presents a case study concerning a seismic characterization project.Full-wave sonic logging was used to characterize the shallow compressional wave and shear wave velocity profiles in the site.Anomalous values of the Poisson’s ratio derived from the velocity profiles suggested that the boreholes might have traversed slow formations(i.e.with shear wave velocity smaller than the borehole fluid compressional wave velocity or“mud-wave speed”)and that conventional processing of the sonic logs might have misinterpreted the direct arrivals of fluid acoustic waves as arrivals caused by shear wave propagation in the rock.Consequently,the shear wave velocity profiles provided by the contractor were considered to be unreliable by the project team.To address these problems,a non-conventional determination of the shear wave velocity was implemented,based on the relationship between the Poisson’s ratio of the rock formation and the shape of the first train of sonic waves which arrived to the receivers in the sonic probe.The relationship was determined based on several hundreds of finite element simulations of the acoustic wave propagation in boreholes with the same diameter as used in the perforations.The present article describes how this non-conventional approach was developed and implemented to obtain the shear wave velocity profiles from the raw sonic logs.The approach allows an extension of the range of applicability of full-wave sonic logging to determination of shear wave velocity profiles in formations with low compressional wave velocities.The method could be used to obtain shear wave velocity profiles where compressional wave velocity is as low as slightly larger than the mud-wave speed.A sample sonic log in Log ASCII Standard(LAS)format is provided as supplementary material to this paper via Mendeley Data,together with the FORTRAN source code used to process the log following the approach described in this study.展开更多
The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate on...The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.展开更多
Thanks to the Cagniard-de Hoop’s method we derive the solution to theproblem of wave propagation in an infinite bilayered acoustic/poroelastic media, wherethe poroelastic layer is modelled by the biphasic Biot’s mod...Thanks to the Cagniard-de Hoop’s method we derive the solution to theproblem of wave propagation in an infinite bilayered acoustic/poroelastic media, wherethe poroelastic layer is modelled by the biphasic Biot’s model. This first part is dedi-cated to solution to the two-dimensional problem. We illustrate the properties of thesolution, which will be used to validate a numerical code.展开更多
We are interested in the modeling of wave propagation in an infinite bilayered acoustic/poroelastic media. We consider the biphasic Biot’s model in the poroelastic layer. The first part was devoted to the calculation...We are interested in the modeling of wave propagation in an infinite bilayered acoustic/poroelastic media. We consider the biphasic Biot’s model in the poroelastic layer. The first part was devoted to the calculation of analytical solution in twodimensions, thanks to Cagniard de Hoop method. In the first part (Diaz and Ezziani,Commun. Comput. Phys., Vol. 7, pp. 171-194) solution to the two-dimensional problem is considered. In this second part we consider the 3D case.展开更多
Bulk acoustic wave resonators with piezoelectric films have been widely explored for the small size and high quality factor (Q) at GHz. This paper describes a high overtone bulk acoustic resonator (HBAR) based on ...Bulk acoustic wave resonators with piezoelectric films have been widely explored for the small size and high quality factor (Q) at GHz. This paper describes a high overtone bulk acoustic resonator (HBAR) based on AI/ZnO/AI sandwich layers and c-axis sapphire substrate. ZnO film with high quality c-axis orientation has been obtained using DC magnetron sputtering. The fabricated HBAR presents high Q at the multiple resonances from a 0.5-4.0 GHz wide band with a total size (including the contact pads) of 0.6 mm×0.3 mm×0.4 mm, The device exhibits the best acoustic coupling at around 2.4 GHz, which agrees with the simulation results based on the one-dimensional Mason equivalent circuit model. The HBAR also demonstrates Q values of 30 000, 25 000, and 6500 at 1.49, 2.43, and 3.40 GHz, respectively. It is indicated that the HBAR has potential applications for the low phase noise high frequency oscillator or microwave signal source.展开更多
文摘We develop a new full waveform inversion (FWI) method for slowness with the crosshole data based on the acoustic wave equation in the time domain. The method combines the total variation (TV) regularization with the constrained optimization together which can inverse the slowness effectively. One advantage of slowness inversion is that there is no further approximation in the gradient derivation. Moreover, a new algorithm named the skip method for solving the constrained optimization problem is proposed. The TV regularization has good ability to inverse slowness at its discontinuities while the constrained optimization can keep the inversion converging in the right direction. Numerical computations both for noise free data and noisy data show the robustness and effectiveness of our method and good inversion results are yielded.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 11274080, and the Young Scientists Fund of the National Natural Science Foundation of China under Grant No. 11404313.
文摘In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.
基金financially supported by the National Key Research and Development Plan of China (No. 2016YFC1401203)the National Natural Science Foundation of China (Nos. 42006168 and 11404079)
文摘Ocean boundaries present a significant effect on the vibroacoustic characteristics and sound propagation of an elastic structure in practice.In this study,an efficient finite element/wave superposition method(FE/WSM)for predicting the three-dimen-sional acoustic radiation from an arbitrary-shaped radiator in Pekeris waveguides with a lossy seabed is proposed.The method is based on the FE method(FEM),WSM,and sound propagation models.First,a near-field vibroacoustic model is established by the FEM to obtain vibration information on a radiator surface.Then,the WSM based on the Helmholtz boundary integral is used to pre-dict the far-field acoustic radiation and propagation.Furthermore,the rigorous image source method and complex normal mode are employed to obtain the near-and far-field Green’s function(GF),respectively.The former,which is based on the spherical wave decomposition,is adopted to accurately solve the near-field source strength,and the far-field acoustic radiation is calculated by the latter and perturbation theory.The simulations of both models are compared to theoretical wavenumber integration solutions.Finally,numerical experiments on elastic spherical and cylindrical shells in Pekeris waveguides are presented to validate the accuracy and efficiency of the proposed method.The results show that the FE/WSM is adaptable to complex radiators and ocean-acoustic envi-ronments,and are easy to implement and computationally efficient in calculating the structural vibration,acoustic radiation,and sound propagation of arbitrarily shaped radiators in practical ocean environments.
文摘This article presents a case study concerning a seismic characterization project.Full-wave sonic logging was used to characterize the shallow compressional wave and shear wave velocity profiles in the site.Anomalous values of the Poisson’s ratio derived from the velocity profiles suggested that the boreholes might have traversed slow formations(i.e.with shear wave velocity smaller than the borehole fluid compressional wave velocity or“mud-wave speed”)and that conventional processing of the sonic logs might have misinterpreted the direct arrivals of fluid acoustic waves as arrivals caused by shear wave propagation in the rock.Consequently,the shear wave velocity profiles provided by the contractor were considered to be unreliable by the project team.To address these problems,a non-conventional determination of the shear wave velocity was implemented,based on the relationship between the Poisson’s ratio of the rock formation and the shape of the first train of sonic waves which arrived to the receivers in the sonic probe.The relationship was determined based on several hundreds of finite element simulations of the acoustic wave propagation in boreholes with the same diameter as used in the perforations.The present article describes how this non-conventional approach was developed and implemented to obtain the shear wave velocity profiles from the raw sonic logs.The approach allows an extension of the range of applicability of full-wave sonic logging to determination of shear wave velocity profiles in formations with low compressional wave velocities.The method could be used to obtain shear wave velocity profiles where compressional wave velocity is as low as slightly larger than the mud-wave speed.A sample sonic log in Log ASCII Standard(LAS)format is provided as supplementary material to this paper via Mendeley Data,together with the FORTRAN source code used to process the log following the approach described in this study.
文摘The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.
文摘Thanks to the Cagniard-de Hoop’s method we derive the solution to theproblem of wave propagation in an infinite bilayered acoustic/poroelastic media, wherethe poroelastic layer is modelled by the biphasic Biot’s model. This first part is dedi-cated to solution to the two-dimensional problem. We illustrate the properties of thesolution, which will be used to validate a numerical code.
基金This work was partially supported by the ANR project“AHPI”(ANR-07-BLAN-0247-01).
文摘We are interested in the modeling of wave propagation in an infinite bilayered acoustic/poroelastic media. We consider the biphasic Biot’s model in the poroelastic layer. The first part was devoted to the calculation of analytical solution in twodimensions, thanks to Cagniard de Hoop method. In the first part (Diaz and Ezziani,Commun. Comput. Phys., Vol. 7, pp. 171-194) solution to the two-dimensional problem is considered. In this second part we consider the 3D case.
基金Project (Nos. 11074274 and 11174319) supported by the National Natural Science Foundation of China
文摘Bulk acoustic wave resonators with piezoelectric films have been widely explored for the small size and high quality factor (Q) at GHz. This paper describes a high overtone bulk acoustic resonator (HBAR) based on AI/ZnO/AI sandwich layers and c-axis sapphire substrate. ZnO film with high quality c-axis orientation has been obtained using DC magnetron sputtering. The fabricated HBAR presents high Q at the multiple resonances from a 0.5-4.0 GHz wide band with a total size (including the contact pads) of 0.6 mm×0.3 mm×0.4 mm, The device exhibits the best acoustic coupling at around 2.4 GHz, which agrees with the simulation results based on the one-dimensional Mason equivalent circuit model. The HBAR also demonstrates Q values of 30 000, 25 000, and 6500 at 1.49, 2.43, and 3.40 GHz, respectively. It is indicated that the HBAR has potential applications for the low phase noise high frequency oscillator or microwave signal source.