In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric...In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.展开更多
The generation characteristics of nonlinear optical signals and their multi-dimensional modulation at micro-nano scale have become a prominent research area in nanophotonics,and also the key to developing various nove...The generation characteristics of nonlinear optical signals and their multi-dimensional modulation at micro-nano scale have become a prominent research area in nanophotonics,and also the key to developing various novel nonlinear photonics devices.In recent years,the demand for higher nonlinear conversion efficiency and device integration has led to the rapid progress of hybrid nonlinear metasurfaces composed of nanostructures and nonlinear materials.As a joint platform of stable wavefront modulation,nonlinear metasurface and efficient frequency conversion,hybrid nonlinear metasurfaces offer a splendid opportunity for developing the next-generation of multipurpose flat-optics devices.This article provides a comprehensive review of recent advances in hybrid nonlinear metasurfaces for light-field modulation.The advantages of hybrid systems are discussed from the perspectives of multifunctional light-field modulation,valleytronic modulation,and quantum technologies.Finally,the remaining challenges of hybrid metasurfaces are summarized and future developments are also prospected.展开更多
This paper presents an improved submodule unified pulse width modulation(SUPWM)scheme for a hybrid modular multilevel converter(MMC)composed of half-bridge submodules(HBSMs)and full-bridge submodules(FBSMs).The propos...This paper presents an improved submodule unified pulse width modulation(SUPWM)scheme for a hybrid modular multilevel converter(MMC)composed of half-bridge submodules(HBSMs)and full-bridge submodules(FBSMs).The proposed SUPWM scheme can achieve an output voltage of(2N+1)(where N is the number of submodules in each arm)levels,which is the same as that of the carrier-phase-shifted PWM(CPSPWM)scheme.Meanwhile,the proposed SUPWM scheme can alleviate the uneven loss distributions between the left leg and right leg in FBSMs of the hybrid MMC.Moreover,the capacitor voltages of the sub-modules can be well balanced without complicated closed-loop voltage balancing controllers.The validity of the proposed SUPWM scheme is verified by both the simulated and experimental results.展开更多
Based on the advantage of phase coded signal and stepped frequency signal,a new hybrid modulation signal is introduced in this paper. It combines phase code modulation during the pulse with stepped frequency modulatio...Based on the advantage of phase coded signal and stepped frequency signal,a new hybrid modulation signal is introduced in this paper. It combines phase code modulation during the pulse with stepped frequency modulation between the pulses, which is named as phase-coded stepped-frequency ( PCSF ) signal. By analyzing its waveform and ambiguity function,the comparison between Stepped-Frequency ( SF) signal and PCSF signal is given,which shows that the PCSF signal is better than SF signal. Finally,the signal processing method with two stage compressed processing is presented. The simulation results show that this new hybrid modulation radar signal can get a higher stepped frequency than ordinary SF signal,realize the same equivalent bandwidth with less pulse number,and solve the conflict among the stepped frequency,the number of pulse, and transmit average power. Under the premises of a certain range resolution,this new hybrid modulation radar signal not only raises the data rate of radar system,but also reduces Doppler sensitivity with a good prospect, and the effect of one-dimensional range profile is much better than that of traditional SF signal. Therefore,this new hybrid modulation radar signal can be widely used in application.展开更多
A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rat...A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.展开更多
Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this unive...Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.展开更多
High performance electro-optic modulator,as the key device of integrated ultra-wideband optical systems,have be-come the focus of research.Meanwhile,the organic-based hybrid electro-optic modulators,which make full us...High performance electro-optic modulator,as the key device of integrated ultra-wideband optical systems,have be-come the focus of research.Meanwhile,the organic-based hybrid electro-optic modulators,which make full use of the advant-ages of organic electro-optic(OEO)materials(e.g.high electro-optic coefficient,fast response speed,high bandwidth,easy pro-cessing/integration and low cost)have attracted considerable attention.In this paper,we introduce a series of high-perform-ance OEO materials that exhibit good properties in electro-optic activity and thermal stability.In addition,the recent progress of organic-based hybrid electro-optic devices is reviewed,including photonic crystal-organic hybrid(PCOH),silicon-organic hy-brid(SOH)and plasmonic-organic hybrid(POH)modulators.A high-performance integrated optical platform based on OEO ma-terials is a promising solution for growing high speeds and low power consumption in compact sizes.展开更多
A compact wirebond packaged phase-leg SiC/Si hybrid module was designed,developed,and tested.Details of the layout and gate drive designs are described.The IC chip for gate drive is carefully selected and compared.Dua...A compact wirebond packaged phase-leg SiC/Si hybrid module was designed,developed,and tested.Details of the layout and gate drive designs are described.The IC chip for gate drive is carefully selected and compared.Dual pulse test confirmed that,the switching loss of hybrid module is close to pure SiC MOSFET module,and it is much less than pure Si IGBT device.The cost of hybrid module is closer to Si IGBT.展开更多
In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fib...In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.展开更多
In this article, we propose a topology of a TLC-HAPF power filter as a harmonic compensator for an optimization of the pollution control of electrical networks. This filter consists of an active part and a passive par...In this article, we propose a topology of a TLC-HAPF power filter as a harmonic compensator for an optimization of the pollution control of electrical networks. This filter consists of an active part and a passive part in order to reduce or limit switching losses during current injection into networks thanks to its TLC module. This topology also provides solutions dynamic performance issues, resonance and lack of compensation capacity for imbalance cases. It also offers a greater range of compensation than conventional active models which do not offer as well as an intermediate circuit voltage in the order of 105 V to 109 V relatively lower than others models (600 v). A modulated hysteresis control of this topology is therefore also developed in this article and allows to obtain a network analysis on the three phases at three levels: source side, load side, and finally at the connection of the filter to the network, allowing to specify for these different positions the value of the current spectrum and its THD at this well-defined moment.展开更多
A novel hybrid self-reconfigurable modular robot is designed to finish the morphing action from line shape to hexagon shape. The robot is composed of many basic modules,each of which consists of a master module and a ...A novel hybrid self-reconfigurable modular robot is designed to finish the morphing action from line shape to hexagon shape. The robot is composed of many basic modules,each of which consists of a master module and a slave module in the shape of triangular prism. There are four connection ports on each basic module. For the master module there are two holes on each connection port,and for the slave one there are two pegs on each connection. The docking process between two neighboring basic modules is analyzed with a peg-in-hole mechanical structure. A small motion's method is presented and the contact forces are derived. According to the force/moment,the pose of a motion module should be adjusted to make two neighboring modules align and finish the docking process.Finally,a simulation of 3 basic modules is shown to finish the morphing and docking process effectively. The system can finish the morphing task from the line shape to the hexagon shape.展开更多
A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to inv...A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to investigate the modulation effects of the pulse duty cycle on the discharge mechanism.An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase.Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species,such as electrons,ions,and radicals.The simulation results show that,the electron energy distribution f(ε)is modulated evidently within a pulse cycle,with its tail extending to higher energies during the power-on period,while shrinking back promptly in the afterglow period.Thus,the rate coefficients could be controlled during the discharge,resulting in modulation of the species composition on the substrate compared with continuous excitation.Meanwhile,more negative ions,like Si H_3^-and Si H_2^-,may escape to the electrodes owing to the collapse of ambipolar electric fields,which is beneficial to films deposition.Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components.展开更多
Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely ...Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles.展开更多
提出了一种混合储能聚合商(hybrid energy storage aggregator,HESA)参与能量-调频市场的控制策略。首先,对于独立系统运营商(ISO)发出的调频指令信号进行VMDWVD时频域分析,重构固有模态分量(IMF)生成高频信号与低频信号,分别作为HESA...提出了一种混合储能聚合商(hybrid energy storage aggregator,HESA)参与能量-调频市场的控制策略。首先,对于独立系统运营商(ISO)发出的调频指令信号进行VMDWVD时频域分析,重构固有模态分量(IMF)生成高频信号与低频信号,分别作为HESA中功率型储能和能量型储能的输入信号。其次,构建了计及多市场价格不确定性的HESA投标与运行策略min-max-min模型,基于列和约束生成算法(C&CG)和强对偶理论对主子问题进行迭代交替求解。最后,基于实际PJM市场的价格、调频信号等数据进行了仿真,验证了HESA主体投标运营策略的有效性。展开更多
光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量...光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量机(support vector machine,SVM)、粒子群优化支持向量机(particle swarm optimized support vector machine,PSO-SVM)、遗传优化支持向量机(genetic optimized support vector machine,GA-SVM)、麻雀优化支持向量机(sparrow optimized support vector machine,SSA-SVM)、灰狼优化支持向量机(gray wolf optimized support vector machine,GWO-SVM)和鲸鱼优化支持向量机(whale optimized support vector machine,WOA-SVM)算法。首先,六种SVM混合算法都克服了SVM诊断结果易受参数初始值影响的缺点,识别精度相较传统SVM算法都有所提升,但是识别时间都增加。其次,7种算法中SCSO-SVM识别效果最好,克服了SVM易受参数初始值的影响,相较SVM识别精度提高了约9.4594%;是因为更能有效找到SVM惩罚因子和核函数参数。然后,对于同一种算法而言,算法的识别精度是随输入特征减少而降低的,是因为输入特征越少,越不能有效表征光伏组件在不同故障类型下的输出属性。但算法的识别时间却不是随输入特征减少而减短。所以选取合适的输入特征才能兼顾算法的故障识别准确率和效率。最后,发现七种算法的识别效果依赖于数据集的影响。原因可能是各个算法参数选择过多导致泛化性有差异,且依赖参数初始值选择。展开更多
基金supported in part by the National Key Research and Development Program of China(2021YFA0716601)the National Science Fund(62225111).
文摘In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274157,12274334,91850113,12021004,and 11904271)the Natural Science Foundation of Hubei Province of China(Grant No.2023AFA076)the Basic and Applied Basic Research Major Program of Guangdong Province of China(Grant No.2019B030302003)。
文摘The generation characteristics of nonlinear optical signals and their multi-dimensional modulation at micro-nano scale have become a prominent research area in nanophotonics,and also the key to developing various novel nonlinear photonics devices.In recent years,the demand for higher nonlinear conversion efficiency and device integration has led to the rapid progress of hybrid nonlinear metasurfaces composed of nanostructures and nonlinear materials.As a joint platform of stable wavefront modulation,nonlinear metasurface and efficient frequency conversion,hybrid nonlinear metasurfaces offer a splendid opportunity for developing the next-generation of multipurpose flat-optics devices.This article provides a comprehensive review of recent advances in hybrid nonlinear metasurfaces for light-field modulation.The advantages of hybrid systems are discussed from the perspectives of multifunctional light-field modulation,valleytronic modulation,and quantum technologies.Finally,the remaining challenges of hybrid metasurfaces are summarized and future developments are also prospected.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51707088,51607081the 5th-level talent introduction program of Kunming University of Science and Technology.
文摘This paper presents an improved submodule unified pulse width modulation(SUPWM)scheme for a hybrid modular multilevel converter(MMC)composed of half-bridge submodules(HBSMs)and full-bridge submodules(FBSMs).The proposed SUPWM scheme can achieve an output voltage of(2N+1)(where N is the number of submodules in each arm)levels,which is the same as that of the carrier-phase-shifted PWM(CPSPWM)scheme.Meanwhile,the proposed SUPWM scheme can alleviate the uneven loss distributions between the left leg and right leg in FBSMs of the hybrid MMC.Moreover,the capacitor voltages of the sub-modules can be well balanced without complicated closed-loop voltage balancing controllers.The validity of the proposed SUPWM scheme is verified by both the simulated and experimental results.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No. 61201237)the Nature Science Foundation of Heilongjiang Province of China(Grant No. QC2012C069)the Fundationtal Research Funds for the Central Universities (Grant No. HEUCFZ1129, HEUCF130810,HEUCF130817)
文摘Based on the advantage of phase coded signal and stepped frequency signal,a new hybrid modulation signal is introduced in this paper. It combines phase code modulation during the pulse with stepped frequency modulation between the pulses, which is named as phase-coded stepped-frequency ( PCSF ) signal. By analyzing its waveform and ambiguity function,the comparison between Stepped-Frequency ( SF) signal and PCSF signal is given,which shows that the PCSF signal is better than SF signal. Finally,the signal processing method with two stage compressed processing is presented. The simulation results show that this new hybrid modulation radar signal can get a higher stepped frequency than ordinary SF signal,realize the same equivalent bandwidth with less pulse number,and solve the conflict among the stepped frequency,the number of pulse, and transmit average power. Under the premises of a certain range resolution,this new hybrid modulation radar signal not only raises the data rate of radar system,but also reduces Doppler sensitivity with a good prospect, and the effect of one-dimensional range profile is much better than that of traditional SF signal. Therefore,this new hybrid modulation radar signal can be widely used in application.
基金the National Basic Research Program of China(No5130601)Jiangsu Provincial Natural Science Foundation(NoBK2006701)
文摘A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.
文摘Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.
基金the National Natural Science Foundation of China(No.62175267)the Beijing Municipal Natural Science Foundation(No.4192061)+1 种基金the Fundamental Research Funds for the Central Universities(2020MDJC13)the Beijing Talents Foundation(2018000021223ZK45)for the financial support.
文摘High performance electro-optic modulator,as the key device of integrated ultra-wideband optical systems,have be-come the focus of research.Meanwhile,the organic-based hybrid electro-optic modulators,which make full use of the advant-ages of organic electro-optic(OEO)materials(e.g.high electro-optic coefficient,fast response speed,high bandwidth,easy pro-cessing/integration and low cost)have attracted considerable attention.In this paper,we introduce a series of high-perform-ance OEO materials that exhibit good properties in electro-optic activity and thermal stability.In addition,the recent progress of organic-based hybrid electro-optic devices is reviewed,including photonic crystal-organic hybrid(PCOH),silicon-organic hy-brid(SOH)and plasmonic-organic hybrid(POH)modulators.A high-performance integrated optical platform based on OEO ma-terials is a promising solution for growing high speeds and low power consumption in compact sizes.
基金This work is supported by The National key research and development program of China(2016YFB0100600)the Key Program of Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(QYZDBSSW-JSC044)the National Natural Science Foundation of China(No.51507166).
文摘A compact wirebond packaged phase-leg SiC/Si hybrid module was designed,developed,and tested.Details of the layout and gate drive designs are described.The IC chip for gate drive is carefully selected and compared.Dual pulse test confirmed that,the switching loss of hybrid module is close to pure SiC MOSFET module,and it is much less than pure Si IGBT device.The cost of hybrid module is closer to Si IGBT.
基金This work was supported by National Key Research and Development Program of China(2018YFB2201101)the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB43000000Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z201100004020004。
文摘In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.
文摘In this article, we propose a topology of a TLC-HAPF power filter as a harmonic compensator for an optimization of the pollution control of electrical networks. This filter consists of an active part and a passive part in order to reduce or limit switching losses during current injection into networks thanks to its TLC module. This topology also provides solutions dynamic performance issues, resonance and lack of compensation capacity for imbalance cases. It also offers a greater range of compensation than conventional active models which do not offer as well as an intermediate circuit voltage in the order of 105 V to 109 V relatively lower than others models (600 v). A modulated hysteresis control of this topology is therefore also developed in this article and allows to obtain a network analysis on the three phases at three levels: source side, load side, and finally at the connection of the filter to the network, allowing to specify for these different positions the value of the current spectrum and its THD at this well-defined moment.
基金Supported by the National Natural Science Foundation of China(No.61175069,51075272,51475300)
文摘A novel hybrid self-reconfigurable modular robot is designed to finish the morphing action from line shape to hexagon shape. The robot is composed of many basic modules,each of which consists of a master module and a slave module in the shape of triangular prism. There are four connection ports on each basic module. For the master module there are two holes on each connection port,and for the slave one there are two pegs on each connection. The docking process between two neighboring basic modules is analyzed with a peg-in-hole mechanical structure. A small motion's method is presented and the contact forces are derived. According to the force/moment,the pose of a motion module should be adjusted to make two neighboring modules align and finish the docking process.Finally,a simulation of 3 basic modules is shown to finish the morphing and docking process effectively. The system can finish the morphing task from the line shape to the hexagon shape.
基金supported by National Natural Science Foundation of China(No.11275038)
文摘A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to investigate the modulation effects of the pulse duty cycle on the discharge mechanism.An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase.Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species,such as electrons,ions,and radicals.The simulation results show that,the electron energy distribution f(ε)is modulated evidently within a pulse cycle,with its tail extending to higher energies during the power-on period,while shrinking back promptly in the afterglow period.Thus,the rate coefficients could be controlled during the discharge,resulting in modulation of the species composition on the substrate compared with continuous excitation.Meanwhile,more negative ions,like Si H_3^-and Si H_2^-,may escape to the electrodes owing to the collapse of ambipolar electric fields,which is beneficial to films deposition.Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components.
基金Funded by the National Key Basic Research Development Program of China(973 Plan)(No.2013CB632505)the National Natural Science Foundation of China(51477125)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles.
文摘提出了一种混合储能聚合商(hybrid energy storage aggregator,HESA)参与能量-调频市场的控制策略。首先,对于独立系统运营商(ISO)发出的调频指令信号进行VMDWVD时频域分析,重构固有模态分量(IMF)生成高频信号与低频信号,分别作为HESA中功率型储能和能量型储能的输入信号。其次,构建了计及多市场价格不确定性的HESA投标与运行策略min-max-min模型,基于列和约束生成算法(C&CG)和强对偶理论对主子问题进行迭代交替求解。最后,基于实际PJM市场的价格、调频信号等数据进行了仿真,验证了HESA主体投标运营策略的有效性。
文摘光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量机(support vector machine,SVM)、粒子群优化支持向量机(particle swarm optimized support vector machine,PSO-SVM)、遗传优化支持向量机(genetic optimized support vector machine,GA-SVM)、麻雀优化支持向量机(sparrow optimized support vector machine,SSA-SVM)、灰狼优化支持向量机(gray wolf optimized support vector machine,GWO-SVM)和鲸鱼优化支持向量机(whale optimized support vector machine,WOA-SVM)算法。首先,六种SVM混合算法都克服了SVM诊断结果易受参数初始值影响的缺点,识别精度相较传统SVM算法都有所提升,但是识别时间都增加。其次,7种算法中SCSO-SVM识别效果最好,克服了SVM易受参数初始值的影响,相较SVM识别精度提高了约9.4594%;是因为更能有效找到SVM惩罚因子和核函数参数。然后,对于同一种算法而言,算法的识别精度是随输入特征减少而降低的,是因为输入特征越少,越不能有效表征光伏组件在不同故障类型下的输出属性。但算法的识别时间却不是随输入特征减少而减短。所以选取合适的输入特征才能兼顾算法的故障识别准确率和效率。最后,发现七种算法的识别效果依赖于数据集的影响。原因可能是各个算法参数选择过多导致泛化性有差异,且依赖参数初始值选择。